Empowering Scientists with Domain Specific

Languages

Julian Kunkel, Nabeeh Jum’ah

Scientific Computing
Department of Informatics
University of Hamburg

SciCADE2017
2017-09-13

AIMES

Outline

Developing Scientific Applications
Domain-specific Languages
AIMES Project

Summary

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Developing Scientific Applications

Runtime perspective

m Performance demanding

m Earth system modelling is an example

m More precise forecasts = higher resolution grids
m Ensemble computation

m Should exploit available compute resources

m HPC landscape increasingly inhomogene

Development view

m Productivity should be the goal

m Software readability/maintainability is a challenge
m Continuous code changes due to experimental character
m Branches to optimize code for different systems

m Software engineering concepts rarely used (agile development)
Julian Kunkel AIMES 3/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Readability: Semantics of Computation

m Goal: multiplication of two matrices

m Scientists perspective: C = A- B

Programming

m In Matlab: C = A« B alternatively C = mtimes(A, B)
m In Mathematica: C = A.B

mInR:C=A%*%B

m In Fortran: C = matmul(A, B)

m In NumPy: C = np.matmul(A, B)

]

Optimized math library — BLAS for C/Fortran:
DGEMM(TransA, TransB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

Julian Kunkel AIMES

4/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Code Optimizations Lead to Diversification

BLAS levels

m BLASI Vector operations
m BLAS2 Matrix-Vector operations
m BLAS3 Matrix-Matrix operations

Reason for additional levels

m Reduce coding effort

m Efficient reuse of cache = minimize memory transfers

m Optimize calling multiple BLAS3 routines? BLAS4+-7
m Compile-time or runtime system needed !

Julian Kunkel AIMES 5/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Stencil Computation

m Finite difference methods in climate/weather

m Numerical methods (explicit or implicit)

m Potentially low arithmetic density, needs cache reuse!

Cache Reuse with Stencils

m Example with three stencils:

for each timestep:
applyStencil(S1, in:{varA, varB}, out:varC)
applyStencil(S2, in:{varA, varC}, out:varD)
applyStencil(S3, in:{varB, varD}, out:varA)
m Mandatory to optimize across stencils
m Machine dependent optimizations, autotuning necessary

Julian Kunkel AIMES

6/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Capabilities of Compilers

Limitations of optimization strategies

m E.g., Vectorization, loop unrolling, interprocedural analysis
Needs information about execution to perform optimization
Must follow the semantics of the (general purpose) language

Based on pattern matching, often full potential is not used

Not available: memory layout adaption, cache management

Optimization time

Traditionally: at compile time (also true for C++ templates)

[

m Profile guided optimization provides some runtime information
m Just-in-time compilers (runtime, may create special versions)
[

Runtime: Lazy execution by library compilers (Big Data tools)

Julian Kunkel AIMES 7/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Runtime: Lazy execution by Library Compilers

m GPL is used to setup control flow
m GPL compiler won't optimize performance critical code-regions

m Library provides functions to register and start computation
m Library generates (optimal) architecture-specific code

m Exploiting semantics of the library
m All information needed to create code is available in memory

registerStencil(S1, in:{varA, varB}, out:varC)
registerStencil(S2, in:{varA, varC}, out:varD)
registerStencil(83, in:{varB, varD}, out:varA)
executeStencils(timesteps)

Julian Kunkel AIMES 8/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Development Approaches

m Manual optimization of source code:
m Adjust code to be easily consumable/optimizable by compilers
m Reduces code readability, many branches
m Complicates maintainability
m Libraries:
m Provide optimized codes usable across applications
m Address multiple target architectures
m Machine-dependent solutions
m Optimization across library calls often not possible
m Just-in-time and runtime compilers:
m Complex to develop und understand
m Compile overhead (to machine representation) at runtime
m Domain-specific languages:
m High-level semantics of application users possible
m Potentially code-preparation at compile time or runtime

Julian Kunkel AIMES 9/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Domain-Specific Languages

Domain-specific language (DSL)

Language assisting to describe (solutions for) problems within a
certain domain

Technical vs. domain-oriented DSLs

m Technical DSL helps to formulate technical requirements

m Instructions for the “compiler” to perform certain optimizations
m Need further effort and technical knowledge from scientists.
m Example: OpenMP, OpenACC, ...
m Domain-oriented DSL
Serves the scientists productivity (expressive, ease of use)
At best: write code as you describe the problem in the domain
System can exploit the semantics to optimize on different levels
Generates (optimized) code for a specific architecture
Acceptance from scientists is crucial

Julian Kunkel AIMES

10/26

ing Scientific Applications Domain-specific Languages AIMES Project Summary

Domain-Specific Languages: Classification

Standalone vs. language extensions

m Standalone DSLs

m Enables paradigm shift to, e.g., declarative programming
m Complete language, requires rewrite of existing code

m Language extensions

m Built on an existing general-purpose language
m Introduces constructs not understood by the GPL compiler:

m Needs an own compiler, preprocessor, or
m Source-to-source code translation (DSL = GPL code)

m May support incremental porting of code

Julian Kunkel AIMES 11/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

Domain-Specific Languages

ATMOL

m A domain-specific language

m Used for atmospheric modeling
m Declarative high-level constructs
m Declare independent variables
m Declare dependent variables
m Data types
m Lower/Upper bounds
m Units
Including scalars and fields
Declare new PDE operators
PDEs are defined with arithmetic expressions
Boundary conditions support via conditional expressions

m Translated into efficient numerical codes

Julian Kunkel AIMES 12/26

Domain-specific Languages

ATMOL code examples

% Declare spatial and time dimensions:
space (x(i),y(j).z(k)) time t.

% Declare grid size variables n, m, and |I:
n :: integer(1l..infinity); m :: integer(l..infinity); | :: integer(2..infinity).

% For convenience, define macros for two grid domains spanning (i,j,k):
atmosphere := i=1..n by j=1..m by k=1..1; surface := i=1..n by j=1..m.

% Set coordinate system for symbolic derivation with chain—rule:
coordinates := [x, y]; coefficients := [h x, h y].

% Declare the model fields:

u:: float dim "m/s" field (x(half),y(grid),z(grid)) on atmosphere.
v::float dim "m/s" field (x(grid),y(half),z(grid)) on atmosphere.
u_aux:: float dim "Pa m/s" field (x(half),y(grid),z(half)) on atmosphere.
v_aux:: float dim "Pa m/s" field (x(grid),y(half),z(half)) on atmosphere.

p::float(0..107000) dim "Pa" field (x(grid),y(grid),z(grid))
monotonic k(+4) on atmosphere.
p_s_t:: float dim "Pa/s" field (x(grid),y(grid)) on surface.

% Define macro for the horizontal wind velocity vector components:
V := [u_aux, v_aux].

% Equations:

p_s_t = —int(nabla .x V, z=1..1).
= [u, v] * d p/d z.

Julian Kunkel AIMES 13/26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

PATUS DSL

A code generation and auto-tuning framework

Domain: Stencil computations
m Stencil specifications embedded in a C-like DSL

Optimization strategy

m A special DSL is provided to specify a strategy
m Parametrized for autotuning

m Architecture-specific optimized C code is generated

Julian Kunkel AIMES 14 /26

Domain-specific Languages

PATUS Stencil Specification Example

stencil uxxl
domainsize = (nxb .. nxe, nyb .. nye, nzb .. nze);
t_max = 1;

operation (
const float grid dl(—1..nx+2,—1..ny+2,—1..nz+2),
float grid ul(—1..nx+2, —1..ny+2, —1..nz+2),
const float grid xx(—1..nx+2,—1..ny+2,—1..nz+2),
const float grid xy(—1..nx+2,—1..ny+2,—1..nz+2),
const float grid xz(—1..nx+2,—1..ny+2,—1..nz+2),
float param dth)

float cl
float c2

9./8.;
—1./24.;

float d = 0.25 = dl[x,y,z] + dl[x,y—1,z] +
dl[x,y,z—1] + d1[x,y—1,z—1]);
ul[x,y,z; t+1] = ul[x,y,z; t] + (dth / d) % (

cl * (
xx[x,y,z] — xx[x—1y, z | +
xy[x,y,z] — xy[x, y—1,z | +
xz[x,y,z] — xz[x, y, z—1]) +
c2 * (

xx[x+1y, z] — xx[x—=2,y, z] +
xy[x, y+l,z] — xy[x, y=2,z] +
xz[x, y, z+1] — xz[x, y, z=2])
)i
}
}
Julian Kunkel AIMES 15 /26

AIMES

Domain-specific Languages

PATUS Strategy Example

strategy cacheblocking (domain u, auto dim cb,

auto int chunk)

// iterate over time steps
for t =1 .. stencil.t_max

// iterate over subdomain
for subdomain v(cb) in u(:; t)
parallel schedule chunk

// calculate the stencil for each point
// in the subdomain

for point p in v(:;
vip; t+1] = stenml (vip: t]):

AIMES 16 /26

Julian Kunkel

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

STELLA DSL

m A domain-specific extended language
m Uses template metaprogramming within C++
m A user writes a single code
m An operator is defined with stages
m Python support with stencil formulation
m Code is translated at compile time for a specific architecture
m Loops are generated for the architecture
m A user-provided functor is used to generate the stencil code
Multiple backends

m Multicore CPUs with OpenMP
m GPUs with CUDA

A specific memory layout is used for each backend

Automatically fuses operator stages to enhance locality

Julian Kunkel AIMES 17/26

Domain-specific Languages

STELLA Code Example

The Laplacian operator as a stage for Horizontal Diffusion

// declarations
IJKRealField data;
Stencil horizontalDiffusion;

// declare stencil stage
template<typename TEnv>
struct Laplace

STENCIL STAGE(TEnv)

STAGE PARAMETER(FullDomain, phi)
STAGE PARAMETER(FullDomain, lap)

static void Do(Context ctx, FullDomain) {

ctx[lap:: Center ()] = —4.0 * ctx[phi:: Center ()] +
ctx[phi::At(iplusl)] + ctx[phi::At(iminusl)] +
ctx[phi::At(jplusl)] + ctx[phi::At(jminusl)]

Julian Kunkel AIMES 18/26

Domain-specific Languages

//define and initialize the stencil
StencilCompiler :: Build (
horizontalDiffusion ,
// define the input/output parameters,
pack parameters(
Param<res , clnOut>(dataOut), Param<phi, cIn)(data)
)

define temporaries(
StencilBuffer<lap, double, KRange<FullDomain,0,0> >(),

define loops(
define sweep<cKlncrement>(
define stages(
StencilStage<Laplace, |JRange<clndented,—1,1,—1,1>,
KRange<FullDomain ,0,0> >(),
StencilStage<Divergence, IJRange<clndented ,0,0,0,0>,
KRange<FullDomain ,0,0> >(),
)
)
)

// execute the stencil instance
horizontalDiffusion.Apply();

Julian Kunkel AIMES 19/26

De tific Ap)oma fic Languag AIMES Project

AIMES Project

Address key issues of icosahedral earth-system models

m Enhance programmability and performance-portability

m Increase storage efficiency

m Provide a common benchmark for ICO models

Covered models
y : \
> N

DYNAMICO NICAM

Julian Kunkel AIMES 20/26

cientific Applicatio omain-s c Languages AIMES Project

AIMES higher level coding approach

m Re-arrange model development workload
m Domain scientists develop domain logic in source code
m Scientific programmers write hardware configurations
m Source code written with extended language
m Closer to domain scientists logic
m Scientists do not need to learn optimization
m Write code once, get performance for various configurations
m Hardware configurations define software performance
m Written by programmers with more experience in platform
m Comprise information on target run environment

o science

|
, o
|
|
l
! compilers ..
! OpenACC
\ J]

(o) |

Physis

Dialects / |\ DSL tools &
| GRIDTo oI 5 infrastructure
| —
|

\
|
)
back-ends : existing tools

Julian Kunkel AIMES 21/26

Developing Scientific Applications

Domain-specific Languages

AIMES Project

Summary

AIMES Approach

Approach

m We build a translation tool that is configurable

m Language can be adjusted for the needs of the scientists
m Processing engine should reduce repeating patterns (in GPL)
m GGDML language example discussed with ICO* model teams

m Parses language extension of GPL code

m Can be used for a bottom up approach for simplifying code
m Incremental adoption possible (if memory layout is unchanged
m Lightweight compiler infrastructure (self maintainable)
m Providing cross kernel optimizations

The Laplacian operator with GGDML (as part of Fortran/C)

FOREACH cell IN GRID
lap(cell) = 4xh(cell)—(REDUCE(+,N={1..4} h(cell%neighbour(N)))
END FOREACH
Julian Kunkel

AIMES

22 /26

Developing Scientific Applications Domain-specific Languages AIMES Project Summary

AIMES Experiments to Show Layout Dependency

Test kernel

m Part of an icosahedral modeling testbed

m Two target architectures: CPU and GPU (unified memory)
m Parallelization: OpenACC for GPU and OpenMP for CPU
m Two memory layouts (3D vs. 1D)

m 5, 7, and 9 point stencils

Configuration

m CPU: lvy Bridge E5-2690 v2 3.0GHz (SP: 240 GFLOP/s)
m GPU: Nvidia K80 (SP: 6 TFLOP/s)

= GPU: P100 (SP: 9-10 TFLOP/s)

m Compiler: PGI 17.5 C

Julian Kunkel AIMES 23 /26

Scientific Applications oma ific La AIMES Project

AIMES Experiments

Performance

CPU Performance K80 GPU Performance P100 GPU Performance
(GFlops/s) (GFlops/s) (GFlops/s)
Stencil Normal 3D 1D [l Normal 3D 1D [| Normal 3D 1D
array addressing array addressing array addressing
5 71 72 78 128 189 342
7 97 97 93 169 243 394
9 112 117 102 195 287 431

m Memory layout's impact on performance is high
m Caching on the GPU added ~25% performance

Julian Kunkel AIMES 24 /26

ing Scientific Applications Domain-specific Lang

AIMES Project

Summary

CPU Measurements Compiler Stuff

m Previous experiments for CPU

m Div, Rad, Grad stencil kernels
m Skylake CPU

m Explored opt. of mem. layout

m 3D and 1D transformation
m Hilbert filling curves & HEVI
m With various compilers

m Intel, GCC, ClLang

m Best layout depends on compiler!

Julian Kunkel AIMES

GFLOPs

-
H

NORSD.

NORID INDIRECT HIL2H

NORSD.

_ optimization

S o

* 02« O3pgoprlie
* 03 « O3pgoseps

']
]] !
H '
' 1
threads.

25 /26

g Scientific Applications Domain-specific Languages AIMES Project

Summary

Julian Kunkel

Scientists should harness methods to improve readability

m As close as possible to the domain’s typical code formalization
m Abstracting from technical details

m Compute backend, memory layout, loops, cache mgmt
m Supporting (semi) automatic optimization / autotuning
Separation of concerns eases understanding/speeds up dev.
m Scientist — scientific programmer — computer scientist
m Abstraction from memory layout
We are working on a generic tool to reduce code replication

m Providing a customizable DSL suitable for any domain
m Exploiting optimization strategies beyond compiler capabilities

Community could define language(s) to express their problems

Other tools relevant for atmospheric modeling:

m BLAS-Like Library Instantiation Framework (BLIS)
m Firedrake (PDE solver system)
AIMES

26 /26

Advertisement

Workshop Exascale 1/0 for Unstructured Grids (EIUG)
When: Monday/Tuesday 25th/26th of Sept.

Where: Hamburg, DKRZ

Speakers: Storage experts, domain experts

Funding is available!
https://wr.informatik.uni-hamburg.de/events/2017/eiug

Julian Kunkel AIMES 27 /26

https://wr.informatik.uni-hamburg.de/events/2017/eiug

	Developing Scientific Applications
	Domain-specific Languages
	AIMES Project
	Summary
	Appendix

