Towards Performance Portability for Atmospheric and Climate Models with the GGDML DSL

<u>Nabeeh Jum'ah</u>, Julian Kunkel, Günther Zängl, Hisashi Yashiro, Thomas Dubos, Yann Meurdesoif

Scientific Computing Department of Informatics University of Hamburg

ISC HPC Research Poster Presentation 2017-06-20

This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 "Software for Exascale Computing" (SPPEXA) (GZ: LU 1353/11-1)

Towards Higher-Level Code Design

Goals

Improve code quality and scientists productivity

- Enhance source repositories maintainability
- Reduce complexity in optimized-code development
- Provide better performance-portability of code

Constraints

- The existing codebases should be preserved
- Tools should be lightweight, flexible, and easily maintainable

Improving Code Quality and Performance-Portability

Strategy

- Foster separation of concerns
 - Domain scientists develop domain logic in source code
 - Scientific programmers write hardware configurations
- Allow coding domain logic with a Domain-Specific Language
 - Extending an existing GPL with domain science concepts
 - Free of any lower level (e.g., architecture) details
- Provide the tools to implement S2S translation
 - Guided by configurations provided by scientific programmers

GGDML: Our Developed DSL

- **GGDML**: General grid definition and manipulation language
- Development: Co-design in collaboration with domain scientists
- Features
 - Hides memory access details
 - Abstracts higher concepts of grids, hiding connectivity details
- Constructs for the abstraction of grids
 - Grid definition
 - Grid-bound variable declaration
 - Grid-bound variable access/update
 - Stencil operations

GGDML Impact on Code Quality

Evaluation

We estimated changes on code size and complexity

	lines (LOC)		words		characters]
Model, kernel	before DSL	with DSL	before DSL	with DSL	before DSL	with DSL	1
ICON 1	13	7	238	174	317	258	1
ICON 2	53	24	163	83	2002	916	۱.
NICAM 1	7	4	40	27	76	86	<u>∎</u> . [
NICAM 2	90	11	344	53	1487	363] -
DYNAMICO 1	7	4	96	73	137	150	1
DYNAMICO 2	13	5	30	20	402	218	1
total	183	55	911	430	4421	1991	1
percentage	30.05%		47.20%		45.04%]

We investigated potential cost savings using COCOMO

Colturano analant	DSL?	Effort	Dev. Time	People	dev. costs
Software project		Applied	(months)	require	(M€)
Somi-dotachod	without	2462	38.5	64	12.3
Jenn-uetacheu	with	1133	29.3	39	5.7
Organic	without	1295	38.1	34	6.5
Organic	with	625	28.9	22	3.1

