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High-Performance Computing (HPC)

Definitions

HPC: Field providing massive compute resources for a computational task

Task needs too much memory or time on a normal computer
⇒ Enabler of complex scientific simulations, e.g., weather, astronomy

Supercomputer: aggregates power of 10,000 compute devices

File system: provides a hierarchical namespace and “file” interface

Parallel I/O: multiple processes can access distributed data concurrently

Example Supercomputer of DKRZ: Mistral

Compute: 3,000 dual socket nodes

Storage: 52 Petabyte (ca. 10,000 HDDs, 300 I/O servers)

Cost for I/O system: 6 Million Euro
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The I/O Stack

Parallel application

Is distributed across many nodes
Has a specific access pattern for I/O
May use several interfaces
File (POSIX, ADIOS, HDF5), SQL, NoSQL

Middleware provides high-level access

POSIX: ultimately file system access

Parallel file system: Lustre, GPFS, PVFS2

File system: EXT4, XFS, NTFS

Operating system: (orthogonal aspect)

The layers provide optimization strategies and tunables Example I/O stack
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Parallel I/O

I/O intense science requires good I/O performance

DKRZ file systems offer about 700 GiB/s throughput

However, I/O operations are typically inefficient: Achieving 10% of peak is good
Unfortunately, prediction of performance is barely possible

Influences on I/O performance

Application’s access pattern and usage of storage interfaces
Communication and slow storage media
Concurrent activity – shared nature of I/O
Tunable optimizations deal with characteristics of storage media
Complex interactions of these factors

The I/O hardware/software stack is very complex – even for experts

Chances for machine learning and statistics

Diagnosing causes
Predicting performance, identification of slow performance
Prescribing tunables/settings
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Illustration of Performance Variability

Best-case benchmark: optimal application I/O

Independent I/O with 10 MiB chunks of data
Real-world I/O is sparse and behaves worse

Configurations vary:

Number of nodes the benchmark is run
Processes per node
Tunable: stripe size, stripe count
Read/Write accesses

Optimal performance:

Small configuration: 6 GiB/s per node
Large configurations: 1.25 GiB/s per node

Best setting depends on configuration!
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Example Pattern: Non-Contiguous Data Access

Parallel applications distribute data across processes

Each process access only parts of the file

Skipped parts are called “holes”

Data-sieving optimization

Ignores (small) holes and reads all data; discard unnecessary data
But: Complex to parameterize as benefit depends on hardware and pattern

Example non-contiguous access pattern

Elementary type

Filetype

Displacement

...File view
File offset

65 8721 43

Hole - data not accessed (dhole)
Accessed data (ddata)

Logical MPI offset
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I/O Modeling and Diagnosing Causes with Statistics

Issue

Measuring the same operation repeatedly results in different runtime

Reasons:

Sometimes a certain optimization is triggered, shortening the I/O path
Example strategies: read-ahead, write-behind

Consequence: Non-linear access performance, time also depends on access size

It is difficult to assess performance of even repeated measurements!

Goal

Predict likely reason/cause-of-effect by just analyzing runtime

Estimate best-case time, if optimizations would work as intended
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Example: Measuring Sequential Read

Duration for individual runtime – 256 KiB accesses (off0 mem layout)
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Comparing Density Plot with the Individual Data Points

Duration for sequential reads with 256 KiB accesses (off0 mem layout)

Algorithm for determining classes (color schemes)

Create density plot with Gaussian kernel density estimator

Find minima and maxima in the plot

Assign one class for all points between minima and maxima

Rightmost hill is followed by cutoff (blue) close to zero⇒ outliers (unexpected slow)
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Write Operations

Results for one write run with sequential 256 KiB accesses (off0 mem layout).

Known optimizations for write

Write-behind: cache data first in memory, then write back

Write back is expected to be much slower

This behavior can be seen in the figure !
Julian Kunkel HAW, 2017 12 / 48
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Simulation of this Behavior

Assume we have two components

Component A is faster than B
Either A or B transfer data
Cache miss of A leads to transfer for B

Overlaying 3 stochastic processes:

Two gamma distributions with scale=1
Normal distribution (little impact)

Resulting time for 1000 data points
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Simulated Access Time and Resulting Density

(a) Timeline (b) Density reveals two classes

Example demonstrating the methodology. Each of the two Gamma distributed processes is drawn with its own
color.
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Approach

Assumptions

Each “class” is caused another optimization/technology

Assign an observation to the likely class
This may lead to (tolerable) errors

Behavior not visible on the density plot is irrelevant

⇒ The strategy identifies relevant “performance factors”

Concept

1 Repeatedly measure time for I/O with a given size

2 Construct the density graph and identify clusters

3 A class is caused by (at least) one performance factor

4 Build a model to assign the cluster across “sizes“

5 Optional: Identify the root cause for the cluster

6 Assign appropriate names, e.g., “client-side cached”
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Approach: Models

Apply a family of linear models predicting time; lm(size) = c + f(size)

Assume time correlates to the operation’s size
Each model represents a condition C (cached, in L1, ...)
tC(size) = lm(size) + lm′(size) + ... and check min(|tC − t̂|)

Assume the conditions for the closest combination are the cause

Ignore the fact of large I/O requests with mixed conditions

i.e., some time of the operation may be caused by C and some by C′

Example models

t(size) = m: Data is discarded on the client or overwritten in memory

t(size) = m + c(size): Data is completely cached on the client ...
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Model for Reading Cached Data

Model accuracy for reading cached data (off0 locality in memory and file). Other figures look similar
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Resulting Performance Models for Read

Read models predicting caching and memory location.
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Using the Model to Identify Anomalies

Using the model, the figure for reverse access shows slow down (by read-ahead)
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Validation: Classify Different Patterns

Experiment cached discard uncached
state-mem-file off0 rnd off0 rnd
D-reverse-off0 R 46 54 0.3 0.03 0.004
C-off0-off0 R 0 34 60 6.1 0.29
C-seq-off0 R 0 0 52 47 0.31
C-seq-reverse R 0 0 42 4.3 54
C-seq-rnd8 R 0 0 30 44 26
C-seq-rnd R 0 0 26 5.6 68
C-seq-seq R 0 0 48 9.5 42
C-seq-stride8,8 R 0 0 28 8.8 63
C-off0-rnd R 0 2e-04 18 1.9 80
U-off0-rnd R 0 0 0.01 0.15 100
U-seq-seq R 0 0 57 6.1 37
C-off0-rnd W 0 0 0 0.003 100
C-off0-seq W W 0 0 40 17 42
C-seq-seq W 0 0 40 12 48
C-off0-reverse W 0 0 71 14 15

Model predictions classes in % of data points for selected memory & file locations – access size is varied.
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Predicting Non-Contiguous I/O Performance

Goal: Predict storage performance based on several parameters and tunables

Alternative models

Predict performance based on parameters

Predict best (data sieving) settings

PM

Input

Buffer Size
Data Sieving
Data Size
Fill Level

Output

estimated Performance

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(a) Performance Model

PSM
Input

Data Size
Fill Level

Output

best Buffer Size
best Data Sieving

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(b) Parameter Setting Model

PM provides a perf. estimate, whereas PSM provides the “tunable” variable parameters to achieve it
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Transformation of the Problem

Aim to apply alternative methods from machine learning

Many require classification problems instead of regression

⇒ Performance values need to be mapped into classes

Mapping

Create 10 classes with the same length up to 5% of max. performance

Then increase performance range covered by 10% each

0 max
| | | | | | | | |

l = ε ◦ max

equal
size classes c

i+1
=c

i
(1+2ε)

|||| || ||||||| || ||
Val

relative size
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Evaluation Data

We analyzed the validity of the approach on two systems

System 1: WR cluster

Lustre 2.5

10 server nodes

1 Gb Ethernet

1 client node (max performance 110 MiB/s)

System 2: DKRZ porting system

Lustre 2.5 provided by Seagate ClusterStor 9000

2 servers

FDR-Infiniband

1 client node (max performance 800 MiB/s)
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Classification Tree: Validation on Data of the WR Cluster

Apply k-fold cross-validation
Split data into training set and validation set
Train model with all (k-1) folds and evaluate it on 1 fold
Repeat the process until all folds have been predicted

A baseline model is the arithmethic mean performance (54.7 MiB/s)
Achieves an arithmethic mean error of 28.5 MiB/s

Linear models yield a mean error of ≥ 12.7 MiB/s

Classification tree results

k
Performance errors in MB/s Class errors
min mean max min mean max

2 6.74 6.80 6.87 1.46 1.59 1.72
4 5.19 6.25 6.92 0.94 1.34 1.72
8 4.67 5.66 6.77 0.87 1.19 1.62

Prediction errors for training sets under k-fold cross-validation. Min & max refer to the folds’ mean error.
Values for k=3..7 lie in between
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Comparing Prediction with Observation

Performance classes and error for k=2, sorted by the observed performance class. Trained by 387 instances,
validated on the other 387 instances.
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Comparing Prediction with Observation

Mispredictions due to sparse training data
Non-linear performance behavior causes errors

Performance prediction for ddata = 256 KiB, 387 instances
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Investigating Training Set Size

Inverse k-fold validation: learn from 1 fold and test on (k-1)
With ≥ 96 instances better than the linear model

Mean prediction error of PM by training set size under inverse k-fold cross-validation. Class prediction errors
show similar behavior
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Extracting Knowledge

Rules can be easily extracted from decision trees

Consider a performance prediction in three classes

Rules (this is common sense for I/O experts)

Small fill levels and data sizes are slow
Large fill levels achieve good performance

Surprising anomaly: smaller fill level, large access sizes are slower than medium

First three levels of the CART classifier rules for three classes slow, avg, fast ([0, 25], (25, 75], > 75 MB/s). The
dominant label is assigned to the leaf nodes – the probability for each class is provided in brackets.
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Prescriptive Analysis: Learning Best-Practises for DKRZ

Performance benefit of I/O optimizations is non-trival to predict

Non-contiguous I/O supports data-sieving optimization

Transforms non-sequential I/O to large contiguous I/O
Tunable with MPI hints: enabled/disabled, buffer size
Benefit depends on system AND application

Data sieving is difficult to parameterize

What should be recommended from a data center’s perspective?
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Measured Data

Simple single threaded benchmark, vary access granularity and hole size

Captured on DKRZ porting system for Mistral

Vary Lustre stripe settings

128 KiB or 2 MiB
1 stripe or 2 stripes

Vary data sieving

Off or On (4 MiB)

Vary block and hole size (similar to before)

408 different configurations (up to 10 repeats each)

Mean arithmetic performance is 245 MiB/s
Mean can serve as baseline “model”
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System-Wide Defaults

Comparing a default choice with the best choice

All default choices achieve 50-70% arithmethic mean performance

Picking the best default default for stripe count/size: 2 servers, 128 KiB
70% arithmetic mean performance
16% harmonic mean performance⇒ some choices result in slow performance

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 K Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128K Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09
1 128 K On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128K On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Performance achieved with any default choice
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Applying Machine Learning

Building a tree with different depths
Even small trees are much better than any default
A tree of depth 4 is nearly optimal; avoids slow cases

Perf. difference between learned and best choices, by maximum tree depth, for DKRZ’s porting system
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Decision Tree & Rules

Extraction of knowledge from a tree

For writes: Always use two servers; For holes below 128 KiB⇒ turn DS on, else off

For reads: Holes below 200 KiB⇒ turn DS on

Typically only one parameter changes between most frequent best choices

Decision tree with height 4. In the leaf nodes, the settings (Data sieving, server number, stripe size) and number of instances
for the two most frequent best choices
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Determining Data Characteristics

Data characteristics:

Proportion of a given (scientific) file format
Performance behavior when accessing file data
Compression characteristics (ratio, speeds)

Understanding these characteristics is useful
Proportions of a file format to identify relevant formats

Starting point for optimization of format

Conducting what-if analysis

Estimate the influence storage compression has
Performance expectations when applying a new strategy

Existing studies use a manual selection of “data” for representing stored data

Julian Kunkel HAW, 2017 37 / 48



Introduction Diagnosing Causes Predicting Performance Learning Best-Practises Determining Data Characteristics Summary

Representative Selection

Analyzing large quantities of data is time consuming and costly

Scanning petabytes of data in > 100 millions of files
With 50 PB of data and 5 GiB/s read, 115 node days are needed
Scanning DKRZ data with a few compression algorithms cost 4000 e

⇒ Working on a representative data set reduces costs

Conducting analysis on representative data is non-trivial

What data makes up a representative data set?
How can we infer knowledge for all data based on the subset?

Based on file number/count (i.e., a typical file is like X)
Based on file size (i.e., 10% of storage capacity is like Y)

Julian Kunkel HAW, 2017 38 / 48



Introduction Diagnosing Causes Predicting Performance Learning Best-Practises Determining Data Characteristics Summary

Example: Determine Scientific File Formats

Notice the difference by file count and capacity

(a) Scientific file types (b) File types according to file magic
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Contribution

Goal

Design a method based of statistical sampling to estimate file properties

Conduct a simple study to investigate compression and file types

Approach

1 Scanning a large fraction of data on DKRZ file systems

Analyzing file types, compression ratio and speed

2 Investigating characteristics of the data set Filetype, compression ratio, ...

3 Statistical simulation of sampling approaches

We assume the population (full data set) is the scanned subset

4 Discuss the estimation error for several approaches
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Statistical Sampling

Can we determine the error when analyzing only a fraction of data?
We simulate sampling by drawing samples from the totally analyzed files

Statistics offers methods to determine confidence interval and sample size

We analyze random variables for quantities that are continuous or proportions
Proportions: fraction of samples for which a property holds

Sample size and confidence intervals

For proportions Cochran’s sample size formula estimates number of samples

Number works for extremely large population sizes
Error bound ±5% requires 400 samples (95% confidence)
Error bound ±1% requires 10,000 samples

For continuous variables

Models require to know the distribution of the value
A-priori unknown, usually not Gaussian, difficult to apply→ out-of-scope (here)
Nevertheless, we will demonstrate convergence
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Efficient Sampling Strategies

Sampling to Compute by File Count

1 Enumerate all files

2 Create a simple random sample

Select a random number of files to analyze without replacement
For proportional variables, the number of files can be computed with Cochran’s formula

Sampling to Compute by File Size

1 Enumerate all files AND determine their file size

2 Pick a random sample based on the probability filesize
totalsize with replacement

Large files are more likely to be chosen (even multiple times)

3 Create a list of unique file names and analyze them

Either scan full file (once) or measure feature on a random file section (chunk)

4 Compute the arithmetic mean for the variables

If a file has been picked multiple times in Step 2., its value is used multiple times
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Demonstration of the Strategies

Apply the approach with an increasing number of samples

Compare true value with the estimated value

Running one simulation for increasing sample counts
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(d) Compute mean by size

Evaluating various metrics (proportions) for an increasing number of samples

This suggests that the results converge quickly but how trustworthy is one run?
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Investigating Robustness: Computing by File Count

Running the simulation 100 times to understand the variance of the estimate

Clear convergence: thanks to Cochran’s formula, the total file count is irrelevant
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Simulation of sampling by file count to compute compr.% by file count
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Investigating Robustness: Computing by File Size

Using the correct sampling by weighting probability with file size

●

●●●

●●

●

●● ●

4 16 64 256 1024 4096 16384 65536

0
20

40
60

80
10

0

Random samples

G
R

IB
 fi

le
s 

%
 o

f s
iz

e

Simulation of sampling to compute proportions of types by size
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Investigating Robustness: Computing by File Size

Using the WRONG sampling by just picking a simple random sample

Almost no convergence behavior; you may pick a file with 99% file size at the end
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Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL    HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space       Guided interface

Programmability

Data mining

Application focus U
ser

S
torage  system

Arbitrary views
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Summary

Parallel I/O is complex and performance difficult to assess

Statistics and machine learning help with key aspects:

Diagnosing causes and identify anomalies
Predicting performance
Prescribing best practices

Additional: Sampling methods to estimate data characteristics
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Appendix
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Distribution of File Sizes

For now, we analyze all scanned files!

File size follows a heavy tailed distribution

90% of files consume roughly 10% capacity

(a) Histogram (logarithmic x-axis) (b) Cumulative file sizes (y-axis in log scale)
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Sampling of the Test Data

DKRZ usage: 320 million files in 12 PB, 270 project dirs
Scan of user accessible data (scan is done by a regular user)

Accessible data: 58 million files, 160 project dirs

Scanned files: 380 k files (0.12%) in 53.1 TiB (0.44%) capacity
Discrepancy since home directories contain very small files

Scanning Process

1 Run a find for each project directory, store it is a file

2 Select up to 10 k files from each project randomly (scan list)

3 Permutate the scan list

4 Partition the scan list into chunks (file lists)

5 Run multiple processes concurrently, each working on a file list

6 Terminate the processes after a couple of days

As we will see this approach is not optimal for analyzing by capacity
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Additional Characteristics Computed by File Count
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Additional Characteristics Computed by File Size
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(e) Drawing 256 samples with replacement
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(f) Drawing 4096 samples with replacement
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System Model: Time costs in the I/O path

t(size) = m + p(size) + n(size) + c(size) + d(size, state)

t depends on the operation type

m: mode switch between user mode and kernel mode

Time for data transfer depends on data locality

Node
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System Model: Time costs in the I/O path

p(size): copy data; user space and kernel space (page cache):
pR−L1: Register to L1
pL1−L1: L1 to L1
pL2−L2: L2 to L2 ...
pm−m: memory to memory
pnuma−numa: memory one CPU to another CPU

c(size): copy data between page cache and device cache
cr: copy data between register and device
cL1: copy data between L1 and device ...
cm: copy data between memory and dev using DMA
cnuma: copy data between another CPU’s memory and dev

d(size, state): time for device io = dseq(size) + dprep(size)
dseq(size): sequential I/O
dprep(size): preparation time, seek time, flush erasure block

n(size): network transfer data between client and server
Also based on memory locality in respect to the I/O port
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