
Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Status Report: University of Hamburg

Nabeeh Jum’ah, Anastasiia Novikova, Julian Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

2017-03-20

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Outline

1 Contributions to WP1

2 Contributions to WP2

3 Contributions to WP3

4 Goals in 2017

Julian M. Kunkel 2 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP1: Towards Higher-Level Code Design

Recap: Goals of the WP

Bypass shortcomings of general-purpose languages
Offer performance-portability
Enhance source repositories maintainability
Get rid of complexity in optimized-code development
Enhance code readability and scientists productivity

Extend modelling programming language
Based on domain science concepts
Free of any lower level (e.g., architecture) details

Julian M. Kunkel 3 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Approach

Re-arrange model development workload
Domain scientists develop domain logic in source code
Scientific programmers write hardware configurations

Source code written with extended language
Closer to domain scientists logic
Scientists do not need to learn optimization
Write code once, get performance for various configurations

Hardware configurations define software performance
Written by programmers with more experience in platform
Comprise information on target run environment

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure

DSL tools &
infrastructure

CPUCPU

OpenACCOpenACC

PhysisPhysis

existing tools

Tools

Julian M. Kunkel 4 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Pursued Approach

DSL

Co-Design approach
Scientists agreement on a unified set of constructs
Model-specific dialect support

Technical ...

Prototyped the lightweight source-to-source translation tool
Developed a strategy how to embed it into build systems
(to-discuss in the round!)
Investigated build optimization(LLVM conference poster)
Investigated various approaches for iterating HEVI ICO data...

Julian M. Kunkel 5 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Pursued Approach

Artefacts

Repository of code kernels
Code for prototype
D1.1 started (but ahead of time)
Posters

Julian M. Kunkel 6 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

DSL development

Co-Design of DSL

Extracted relevant codes from the models
Reformulated them as DSL variants
Identified commonalities and abstracted them
Discussed with scientists the formulation
Specified the DSL and converted code into DSLized version

Julian M. Kunkel 7 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

DSL development

Developed DSL (GGDML) constructs
GGDML:General grid definition and manipulation language
Grid definition
Grid-bound variable declaration
Grid-bound variable access/update
Stencil operations

Hide memory access details
Abstract higher concepts of grids, hiding connectivity details

Julian M. Kunkel 8 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

DSL development

GGDML basic concepts

Element wise access

Basic grid abstraction

Cell

Edge

%edge

Vertex

%vertex

%cell

%vertex

%cell

%edge

GRID

RANGE, EDGE, nD

%edges

RANGE, CELL, nD

%cells

RANGE, VERT, nD

%vertices

foreach

foreach

foreach

Julian M. Kunkel 9 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

GGDML impact

LOC statistics
lines (LOC) words characters

Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
percentage 30.05% 47.20% 45.04%

ICON
1
ICON

2
NICA

M 1
NICA

M 2
DYN.

1
DYN.

2

0

20

40

60

80

Lin
es

existing code
with GGDML

COCOMO estimations
Software project DSL? Effort

Applied
Dev. Time
(months)

People
require

dev. costs
(M€)

Semi-detached without 2462 38.5 64 12.3
with 1133 29.3 39 5.7

Organic without 1295 38.1 34 6.5
with 625 28.9 22 3.1

Julian M. Kunkel 10 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Tool structure and embedding into code

Julian M. Kunkel 11 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Perspective: Scientist

Use Fortran to write model
Write kernels with GGDML iterator
Within iterator: write Fortran code body
Access an element with respect to grid (not memory)

Julian M. Kunkel 12 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Perspective: Scientific Programmer

Handle code translation workload
Find best options for run environment to optimize software

Parallelization details
Caching options
Vectorization considerations
General optimizations options
...

Prepare configuration files necessary to generate code

Julian M. Kunkel 13 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Results of Performance Analysis

Tools developed for
Source-to-source translation
Performance analysis
Model build optimization

Explored Optimization options
Explored memory-layouts

3D and 1D transformation
Hilbert filling curves & HEVI

With various compilers
Intel
GCC
CLang

Julian M. Kunkel 14 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP1: Towards Higher-Level Code Design

Higher-level code (i.e. using DSL extensions) is translated
within a configuration driven translation procedure
into machine-optimized general-purpose language code

Soure-to-source translation tools are used
Lightweight tools for high maintainability and ease of use
Easily integrate into build systems (e.g. make)
High flexibility and extensibility

Different general-purpose languages can be used (pluged in)
Model-specific dialects can be handled
DSL extension/modification is possible with little effort

Julian M. Kunkel 15 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP1: Towards Higher-Level Code Design

Tools to improve compilation of optimized code
To harness power of general purpose programming language
compilers
Improve usage of compiler options to build repositories

Learn optimal compilation procedure at a repository build
Use learned information for next builds
Less compile time
Optimized compilation to get performance of optimized code

Julian M. Kunkel 16 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Massive I/O

Recap: Goals of the WP2

Optimization of I/O middleware for icosahedral data
Throughput, metadata handling

Design of domain-specific compression (c. ratio > 10 : 1)
Investigate metrics allowing to define accuracy per variable
User-interfaces for specifying accuracy
Methodology for identifying the required accuracy
Compression schemes exploiting this knowledge

Julian M. Kunkel 17 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Supported quantities

Quantities defining the residual (error):
absolute tolerance: compressed can become true value ± absolute tolerance
relative tolerance: percentage the compressed value can deviate from true value
relative error finest tolerance: value definining the absolute tolerable error for relative

compression for values around 0
significant digits: number of significant decimal digits
significant bits: number of significant decimals in bits

Quantities defining the performance behavior:
absolute throughput in MiB or GiB
relative to network or storage speed

The system’s performance must be trained initially.

Julian M. Kunkel 18 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Architecture of SCIL

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data

Compression chain

Julian M. Kunkel 19 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Tools

Creating several relevant multi-dimensional data patterns of any size
Adding random noise based on the hint set to existing data
To evaluate compression on existing CSV and NetCDF data files

Julian M. Kunkel 20 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Implemented compression methods

GZIP (GNU ZIP)
ZFP
SZ
FPZIP
LZ4fast
WAVELET
Wavetrisk
Abstol
Sigbits

Abstol and Sigbits were developed alongside SCIL at the Universität Hamburg.

Julian M. Kunkel 21 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: File Formats

CSV

HDF5
NetCDF4

Julian M. Kunkel 22 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Tolerance-Based Results
The mean compression factor is computed based on the sum of the data size:

factor of 50:1 means the space is reduced to 2% of the original size.

Julian M. Kunkel 23 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Results for Precision Bits

Comparing algorithms using 9 precision bits for the mantissa.

Julian M. Kunkel 24 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Results for Precision Bits

Julian M. Kunkel 25 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Results for Precision Bits

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
sigbits 0.45 464.4 620.7
sigbits,lz4 0.23 401.6 585.2
zfp-precision 0.3 194.8 418.3

Table: For ECHAM data files

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
sigbits 0.39 520.9 658.0
sigbits,lz4 0.39 499.8 639.3
zfp-precision 0.32 170.1 255.8

Table: For 5 different random patterns

Julian M. Kunkel 26 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Results for Absolute Tolerance

Comparing algorithms using an absolute tolerance of 1% of the maximum value

Julian M. Kunkel 27 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Results for Absolute Tolerance

Julian M. Kunkel 28 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Results for Absolute Tolerance
Throughput [MiB/s]

Algorithm Ratio Compr. Decomp.
abstol 0.22 269.3 461.7
abstol,lz4 0.08 253.4 446.8
sz 0.08 66.0 127.4
zfp-abstol 0.24 263.9 492.9

Table: For ECHAM data files

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
abstol 0.229 260.1 457.8
abstol,lz4 0.230 257.9 913.2
sz 0.252 46.4 46.0
zfp-abstol 0.387 163.1 223.7

Table: For 5 different random patterns

Julian M. Kunkel 29 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Experiments

For each test data (CSV or NetCDF format), the following setups
are run:

Lossless compression
Algorithms: memcopy and lz4

Lossy compression with significant bits
Tolerance: 3, 6, 9, 15, 20 bits
Algorithms: zfp, sigbits, sigbits+lz4

Lossy compression with absolute tolerance
Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value
Algorithms: zfp, sz, abstol, abstol+lz4

In the test, one thread of the system is used for the
(de-)compression. A configuration is run 10x measuring
(de-)compression time and compression ratio.

Julian M. Kunkel 30 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Experiments

Single precision floating point test data is build upon:
Synthetic, generated by SCIL’s pattern lib.

e.g., Random, Steps, Sinus, Simplex
Data of the variables created by ECHAM

The climate model creates 123 vars

Julian M. Kunkel 31 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Example synthetic data: simplex 206 in 2D

Julian M. Kunkel 32 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Compressed with Sigbits 3bits (ratio 11.3:1)

Julian M. Kunkel 33 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

WP2: Summary

Results:

novel algorithms can compete with ZFP/SZ when setting the
absolute tolerance or precision bits
SZ compresses better than abstol (in some cases)

Future work:

A single algorithm honoring all quantities
Automatic choose for the fitting algorithm

Julian M. Kunkel 34 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Goals in 2017

Deliverables
M15 (May 2017) D1.1 Model-specific dialect formulations
M18 (Aug 2017) D2.3 Report and code: compression API (+ test apps)
M24 (Feb 2018) D1.2 Report and whitepaper: DSL concepts for ico models
M24 (Feb 2018) D2.4 Report and code: best-practices to det. var accuracy
M24 (Feb 2018) D2.5 Report: Optimization potential in ICO formats (?)

WP1

Translation tool ready for Fortran ICON, NICAM and
DYNAMICO kernels to:

OpenMP, GPU w. OpenACC, Xeon Phi
Target kernels as part of the testbed (WP3)
Some optimization (not all necessary optimizations)

Evaluation of YASK
Julian M. Kunkel 35 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Goals in 2017

WP2

Task 2.1: Investigate file formats for ICO data: 2 Month
Workshop: Exascale I/O for Unstructured Grids (EIUG)
September Monday 25th

Establish collaboration with externals
Developers of: CubismZ, SZ, ZFP

Stabilize APIs and memory handling of SCIL
Decision algorithm for SCIL
AllQuant compression: Honoring all quantities

Julian M. Kunkel 36 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Goals in 2017

WP3

HDF5 / NetCDF benchmarking for compression
Synthetic using NetCDF bench (developed at DKRZ)

Extension of the benchmark for SCIL patterns
Problem: Parallel compression patch not yet included in HDF5
Embedded into a real application... But which?
Alternative: Application writes another format / we change it?

Testbed with DSL-ized kernels and workflows to test

Julian M. Kunkel 37 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Roadmap for WP1

May: Paper (DSL) to Journal: more on SWE / costs, writing D4.1 (scientific
report)
April: Writing D1.1, translation tool, (vacation)
May: Deliver D1.1 (Model-specific dialects), trivial cases on Xeon Phi/GPGPUs,
translation tool
June: ISC-HPC attendance, convert ICON code to DSL, translation tool
July: Support converting WP3 testbed to DSL, preliminary testing on Xeon Phi,
GPGPUs
Aug:
Sept: Support converting WP3 testbed to DSL
Oct: Support converting WP3 testbed to DSL, alternative memory layouts
Nov: Performance testing of DSL
Dec: Paper writing
Jan: (vacation)
Feb: Deliver 1.2 (DSL concepts)

Julian M. Kunkel 38 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Roadmap for WP2

April: Investigate file formats + Start D2.3
May: Write D2.3, structure for D2.4, D2.5, (vacation)
June: SCIL extension: API + memory handling, ISC conference

July: SCIL extension: AllQuant
Experiment with some file formats
Install them, observe access patterns on Mistral

Aug: Deliver D2.3, prepare presentation for EIUG workshop
Sept: EIUG workshop, Ideas for D2.4
Oct: Write D2.5, Investigate file formats (vacation)
Nov: Write D2.4, experiments for D2.4
Dec: Experiments for D2.4
Jan: Incorporate feedback into D2.4 / D2.5, decision algorithm
Feb: Deliver D2.4, D2.5, paper for results of WP2

Julian M. Kunkel 39 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Collaboration

WP1 / Nabeeh

March-May: Reviews/Contributions to D1.1 Model-specific dialect
Providing domain scientists perspective on formulation (one
page per model / add your terminology)
Checking code snippets

Sept-Feb: Reviews/Contributions to D1.2 DSL concepts

July: Input needed: Formulation of WP3 testbed
Prototype kernels / applications

Oct: Porting some kernels to the DSL (with our help)
We must do performance tests

Julian M. Kunkel 40 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Embedded documentation Deliverable: D1.1 that is Next

TODOs (as suggestions) are provided within the deliverables where
actions are needed.
This way documents become self managed in terms of actions.

Julian M. Kunkel 41 / 42

Contributions to WP1 Contributions to WP2 Contributions to WP3 Goals in 2017

Collaboration

WP2 / Anastasiia

June: Information about used file formats (D2.5)
What file formats are you using?
Describe issues and problems you have for these formats
Contribution to D2.5

July: Review of D2.3

Oct: Contribution to D2.4 (identify accuracy)
How can a scientist identify the accuracy?
We have to test it on real code?
Visualization / checkpoint restart requirements...

Dec: Review of D2.4
Dec: Review of D2.5

WP4

April, Contributions to D4.1 (scientific report)
Julian M. Kunkel 42 / 42

	Contributions to WP1
	Contributions to WP2
	Contributions to WP3
	Goals in 2017

