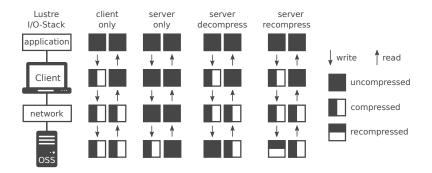
Enhanced Adaptive Compression in Lustre IPCC for Lustre

Anna Fuchs

anna.fuchs@informatik.uni-hamburg.de

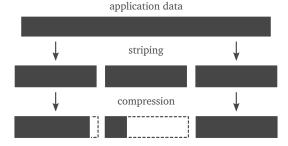
Research Group Scientific Computing Department of Informatics, Universität Hamburg

2016-09-22



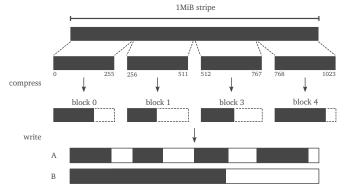
Der Forschung | der Lehre | der Bildung

Compression		
000000	000	0


Lustre stack

- Different combinations depending on the needs
- Server able to decompress for random I/O

Basic functionality

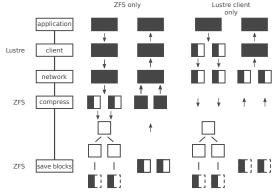

- Based on stripes
- Early abort for incompressible data
- Metadata for every stripe (or record)
- Additional service within PTLRPC-layer (before GSS)
 - Reuse or extension of GSS-layer functionality

Compression oo●oooo	

Sub-striping

- + Independent blocks compressed in parallel
- + Reduce read-modify-write issues
- Read-ahead potentially worse

Compression ooo●ooo	


ZFS

- Primary focus on ZFS backend
 - Already supports record-level compression
 - Each block compressed independently
 - All-zero blocks converted into file holes

Compression ooo●ooo	
750	

ZFS

- Primary focus on ZFS backend
 - Already supports record-level compression
 - Each block compressed independently
 - All-zero blocks converted into file holes
- Goal: ZFS-Lustre interaction; reuse data structure

Alignment

- Align ZFS's records and Lustre's stripes and sub-stripes
- Match alignment for best performance
- Skip compression in ZFS discussion
- Extend ZFS-Lustre interface
- Lustre (client/server) de-/compresses, ZFS manages metadata (location, offsets, etc.)

Compression 00000●0	
Algorithms	

- Modern algorithms reach 3+ GiB/s compression, 6+ GiB/s decompression throughput

Compression ○○○○○●○	

Algorithms

- Modern algorithms reach 3+ GiB/s compression, 6+ GiB/s decompression throughput
- Lack of implementation within kernel
 - Older LZ4 available from kernel 3.11
 - CentOS7 Kernel 3.10
 - Solution for Lustre *discussion*

Compression ooooo●o	

Algorithms

- Modern algorithms reach 3+ GiB/s compression, 6+ GiB/s decompression throughput
- Lack of implementation within kernel
 - Older LZ4 available from kernel 3.11
 - CentOS7 Kernel 3.10
 - Solution for Lustre discussion
- Memory handling
 - Common algorithms work with independent buffers
 - Data in Lustre PTLRPC accessible on page level (scatterlists?)
 - Memory consumption discussion
- Intel QuickAssist

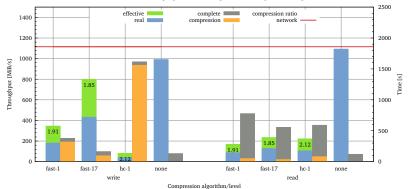
Compression oooooo●	

Features

- Adaptive compression how configurable?
 - Internal adaptivity within system
 - Network data rate
 - Available computational resources
 - File sizes worthwhile for big files
 - ...
 - High-level user hints with ladvice
 - Bad/well compressible
 - Frequently read
 - Written once
 - Archive
 - ..

	Evaluation	
000000	000	0

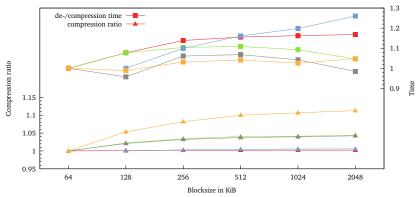
Userspace – IOR Ethernet


- 10 Lustre clients, 10 servers, 240 files a 1 GiB, 1 MiB stripes, ZFS, Lustre 2.8
- Single thread compression with LZ4

file-per-process - clients 10 (1 per node), xfersize 1 MiB, blocksize 1 MiB, aggregate size 240 GiB

Userspace – IOR IB

- Single stream 128 GiB, 1 MiB stripe, Idiskfs, Lustre 2.5
- Single thread compression insufficient for IB; very bad read


1 client, 1 server, 128 GiB file-per-process, Lustre stripe size 1 MiB, single thread compression

Evaluation oo●	Misc O

Block sizes

- Times and ratios normalized to 64 KiB results
- Acceptable ratios with small blocks
- Similar results with LZ4-HC

Different scientific data sets (2 MiB) compressed with LZ4 Fast-17, single thread

- Duration June 2016 February 2019 (expected)
- Current work focused on client-side compression
 - Already requires infrastructure changes on server's side
- Project at http://wiki.lustre.org/Projects

Feature \$	Feature Summary 🔶	Point of Contact	Tracker ¢	Target Date (YYYY-MM)
Enhanced Adaptive Compression in Lustre	Introduce compression for the Lustre client and server	Michael Kuhn (Universität Hamburg)		2019-02

Misc

- Duration June 2016 February 2019 (expected)
- Current work focused on client-side compression
 - Already requires infrastructure changes on server's side
- Project at http://wiki.lustre.org/Projects

Feature \$	Feature Summary 🔶	Point of Contact	Tracker ¢	Target Date (YYYY-MM)
Enhanced Adaptive Compression in Lustre	Introduce compression for the Lustre client and server	Michael Kuhn (Universität Hamburg)		2019-02

- Additional student works (Master Theses)
 - Adaptive Compression for ZFS (finished, to be submitted)
 - Improving ZFS compression more algorithms
 - Policy module for Lustre make decisions dynamically
 - ZFS interface for transformed data

Misc