Lustre usage and compression at DKRZ

Michael Kuhn

Research Group Scientific Computing Department of Informatics Universität Hamburg

2016-09-21

DKRZ's Mistral	Cost efficiency		Bibliography
0000000	00000000	0	0

1 DKRZ's Mistral

DKRZ's Mistral 00000000	Cost efficiency	Conclusion O	Bibliography O
About us: Sci	ientific Computing		

Michael Kuhn

Lustre usage and compression at DKRZ

We are an Intel Parallel Computing Center for Lustre ("Enhanced Adaptive Compression in Lustre")

- Analysis of parallel I/O
- I/O & energy tracing tools
- Middleware optimization

- Alternative I/O interfaces
- Data reduction techniques
- Cost & energy efficiency

HLRE3 – Mistral¹

- Went into operation in two phases
 - Spring 2015 and spring 2016
- Currently number 33 on the TOP500
- Approximately 3,000 nodes
 - 1,500 nodes: 2× Intel Xeon E5-2680v3 12C 2.5 GHz (Haswell)
 - 1,600 nodes: 2× Intel Xeon E5-2695V4 18C 2.1 GHz (Broadwell)
- 2.5 PFLOPS (3.14 PFLOPS peak)
- 240 TB RAM
- InfiniBand FDR
 - Fat tree with 2:2:1 blocking

¹With a lot of information from Carsten Beyer.

- Lustre with a capacity of 54 PiB
 - Split into two file systems, due to phases
- One of the largest storage systems
 - Storage development is a problem
 - CPU factor 20, storage speed factor 15, storage capacity factor 9.5
- Based on Seagate ClusterStor
 - Scalable Storage Units (SSU) and Expansion Storage Units (ESU)
- Throughput of 450 GB/s
 - 5.9 GB/s per node
 - Single-stream performance: 1 GB/s

DKRZ's Mis	stral DO		Cost efficiency 000000000		Conc O	lusion	Bibliography O
HLR	E3 – Mis	stral.					
⊖ # Edit Jow Higtory Bookma ∰ ChaterStor Hanager ★	uka Daja Mela		Outers	tor Manager - Matilla Prefos			ن د د
) () 🔒 https://10.50.0.51						C Q, Search	* 8 0 4 4 0 -
ClusterStor							Help User (admin)
Node Status			top State top State	Pile System Thr		MAN Arter All Martin	Martin Martin Martin Martin
Inventory				Top System Stal	istics		
Racks Servers	hpe 420 20 Quad Server Chassis Embedded Server Node 20 Quad Server Node	Quantity 11 1 66 4	Status Installed Installed OK	File System	Netric Peak Read Current Read Peak Write Current Write	Ca 73.3 GB/s 5.79 GB/s 10.65 GB/s 2.78 GB/s	pathy overvew
Storage Hardware	2024 Disk Array 5084 Disk Array	3 60 5152	Installed Installed	Metadata Storage	Current Operations Number of OSTs in use	195.55% Op/s 124	78.2%
						1	Used = 16.04 PB

Phase 1 (CS9000)

- Lustre 2.5.1 (Seagate)
- 62 OSSs with 124 OSTs
- 5 MDSs with DNE
- Per SSU/ESU: Two trays with 41× 6 TB HDDs each
 - One SSD for parity
- 80,000 metadata operations per second
- Phase 2 (L300)
 - Lustre 2.5.1 (Seagate)
 - 74 OSSs with 148 OSTs
 - 7 MDSs with DNE
 - Per SSU/ESU: Two trays with 41 × 8 TB HDDs each
 - One SSD for parity

- File system is separated into Home, Work and Scratch
- Home for code, configuration files etc.
 - 24 GB quota per user
 - Backup
- Work for input and output data
 - Project-specific quotas (TBs)
 - No backup
- Scratch for temporary data
 - 15 TB quota per user
 - No backup
 - Data is deleted 14 days after last access

- Policies are implemented using Robinhood
 - Quota reporting, planned for cleaning up Scratch
- Currently five instances, one per MDS (phase 1)
 - Planned: Two instances for phase 1, three for phase 2
- 2× RAID1 with two SSDs (500 GB each)
 - One for OS (ext4), one for MariaDB (XFS)
- 256 GB RAM, 128 GB dedicated to Robinhood
- Performance is satisfactory
 - Can scan 6,000,000 entries per hour
 - 60,000,000 entries per MDS

Tape system with a capacity of 200 PB

- 15 GB/s throughput
- No automatic HSM
- System is stable, everything works
 - Failover etc.
- Client upgrade to 2.7 is planned (October)
 - Server upgrade is currently not planned

Workflow

- Climate applications often use CDI/NetCDF/HDF
 - Supports parallel I/O via MPI-IO
- Scientists have application- and domain-specific solutions
 - I/O servers such as XIOS
- Performance is problematic
 - Most applications use serial I/O
 - Data is shipped to master process that performs I/O
 - Simply turning on parallel I/O makes it slower

Gap between computation and storage

- Capacity and performance continue to increase exponentially
 Different components improve at different speeds
- I/O is becoming an increasingly important problem
 - Data can be produced faster but it becomes harder to store it
- Consequence: Spend more money on storage
 - Results in less available money for computation
 - Or more expensive systems overall
- Storage becomes a considerable portion of the TCO
 - Around 20 % of total costs for DKRZ

OS							OS
uncompressed	Ŧ		P	P			compressed
Data Flow							Data Flow 🖌
Network							Network
uncompressed			_				compressed
↓ ↑							↓ ↑
Storage		MDSs			OSSs		Storage
Lustre							Lustre
uncompressed				- 01			compressed
J↑		\setminus /	\	/	\setminus /		↓↑
ZFS			1			4	ZFS
compressed		MDTs	-		OSTs		compressed

Cost efficiency

- Left: Compression is only performed on the servers (status quo)
- Right: Compression can be performed on the clients (goal)

DKRZ's Mistral 00000000	Cost efficiency 00●000000	

- Investigated compression across the whole I/O stack [1]
 - Main memory, network, storage
 - Both performance and costs
- Compression and HPC usually do not mix well
 - Modern algorithms can provide high performance
- Some interesting results regarding cost efficiency
 - Still have to analyze performance impact in more detail

KRZ's Mistral 0000000		Cost efficiency 000●00000	Conclusion O	Bibliogra O	
	Algorithm	Compression	Decompression	Ratio	
	lz4fast	2,945 MB/s	6,460 MB/s	1.825	
	lz4	1,796 MB/s	5,178 MB/s	1.923	
	lz4hc	258 MB/s	4,333 MB/s	2.000	
	lzo	380 MB/s	1,938 MB/s	1.887	
	xz	26 MB/s	97 MB/s	2.632	
	zlib	95 MB/s	610 MB/s	2.326	
	zstd	658 MB/s	2,019 MB/s	2.326	

- Measured using lzbench on a climate data set
- Iz4 and Iz4fast are suspiciously good
 - Additional benchmarks confirm results are realistic
- zstd is also interesting
 - Higher compression ratio with decent performance
- Several good candidates for archival

- zram can be used to compress main memory
 - Izo and Iz4, multiple compression streams
- Reach a per-node capacity of 128 GB
 - Compress as much as necessary to reach capacity target, leave remaining main memory uncompressed
 - Not possible with 64 GB (leave 4 GB uncompressed)
- Leads to more data that we have to store

- I/O performance not optimal due to network layout
- Per-node throughput could be improved to roughly 100 Gbit/s (lz4fast) or 125 Gbit/s (zstd)
 - zstd limits throughput for networks faster than 54 Gbit/s
- Alternatively, FDR InfiniBand network could be replaced with QDR InfiniBand when using lz4fast, decreasing costs by 15 %

DKRZ's Mistral 00000000	Cost efficiency ○○○○○○●○○	

- Assumption: 50 PB of storage with 650 GB/s throughput
 - Costs approximately € 6,000,000
 - Distributed across 60 SSU/ESU pairs
 - Results in 833 TB and 10.8 GB/s per pair
- Costs of € 100,000 per SSU/ESU pair
 - Assume base costs of € 10,000
 - Up to € 90,000 for HDDs
- Additional costs of € 1,500 for compression
 - Each pair currently equipped with two 8-core CPUs
 - Dedicated or faster CPUs for compression

DKRZ's Mistral 0000000	Cost efficiency 0000000●0	

- Scenario 1: Purchase as many fully equipped SSU/ESU pairs as necessary for 50 PB
 - Lower costs: Buy the minimal amount of hardware
 - Decreased throughput: Missing pairs impact performance
- Scenario 2: Purchase as many HDDs as necessary for 50 PB and distribute them across 60 SSU/ESU pairs
 - Slightly higher costs: Base costs for pairs
 - Higher throughput: No pairs are missing

- Iz4 and Iz4fast do not degrade performance, costs are decreased to roughly € 3,500,000
- zstd decreases throughput by 20 GB/s and costs to € 3,000,000

Conclusion

- DKRZ has one of the largest storage systems
 - Using it efficiently is sometimes problematic
- Storage systems lag behind computation
 - Problem will only get worse over time
 - Compression can help alleviate it
- We are working on compression in Lustre
 - https://wr.informatik.uni-hamburg.de/ research/projects/ipcc-l/start

[1] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Data Compression for Climate Data. *Supercomputing Frontiers and Innovations*, pages 75–94, 06 2016.