I/O Benchmarking

Julian M. Kunkel

kunkel@dkrz.de

German Climate Computing Center (DKRZ)

17-06-2016

Outline

1 Mistral's Storage System

- 2 Mistral's I/O Performance
- 3 In-Memory Storage

I/O Architecture (Phase 1)

- 31 ClusterStor 9000 Scalable Storage Units (SSUs)
 - SSU: Active/Active failover server pair
- Single Object Storage Server (OSS)
 - 1 FDR uplink
 - GridRaid: (Object Storage Target (OST))
 - 41 HDDs, de-clustered RAID6 with 8+2(+2 spare blocks)
 - 1 SSD for the Log/Journal
 - 6 TByte disks
- 31 Extension units (JBODs)
 - Do not provide network connections
 - Storage by an extension is managed by the connected SSU
- Multiple metadata servers
 - Root MDS + 4 DNE MDS
 - Active/Active failover (DNEs, Root MDS with Mgmt)
 - DNE phase 1: Assign responsible MDS per directory

I/O Architecture (Phase 2)

Additional file system (Now two file systems in total)

- Mounted on all compute nodes
- Characteristics: 11 k disks, 52 PB storage
- 34 ClusterStor L300 Scalable Storage Units (SSUs)
- 34 Extension units (JBODs)
- Storage hardware
 - Seagate Enterprise Capacity V5 (8 TB) disks
- Multiple metadata servers
 - Root MDS + 7 DNE MDS

Parallel File System

Lustre 2.5 (Seagate edition, some backports from 2.7+)

Filesystem

- We have two file systems: /mnt/lustre0[1,2]
- Symlinks: /work, /scratch, /home, ...
- For mv, each metadata server behaves like a file system

Assignment of MDTs to Directories

- In the current version, directories must be assigned to MDTs
 - /home/* on MDT0
 - /work/[projects] are distributed across MDT1-4
 - /scratch/[a,b,g,k,m,u] are distributed across MDT1-4
- Data transfer between MDTs is currently slow (mv becomes cp)
- We will transfer some projects to the phase 2 file system

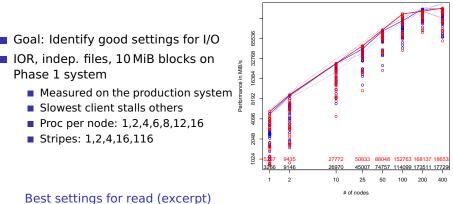
Peak Performance

Phase 1 + 2

- 65 SSUs · (2 OSS/SSU + 2 JBODs/SSU)
- 1 Infiniband FDR-14: 6 GiB/s \Rightarrow 780 GiB/s
- 1 ClusterStor9000 (CPU + 6 GBit SAS): 5.4 GiB/s
- L300 yield IB speed, still we consider 5.4 GiB/s ⇒ aggregated performance **704 GiB/s**
- Phase 2: obd-filter survey demonstrates that 480 GB/s and 580 GB/s can be delivered

In-Memory Storage 0000

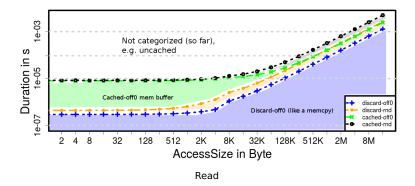
Performance Results from Acceptance Tests


- Throughput in GB/s (% to peak) measured with IOR
 - Buffer size 2000000 (unaligned) on 42 OSS (Phase 1) and 64 (P 2)
 - In the phase 2 testing, the RAID of at least one OSS is rebuilding

	Pha	se 1	Phase 2				
Туре	Read	Write	Read	Write			
POSIX, independent ¹	160 (70%)	157 (69%)	215 (62%)	290 (84%)			
MPI-IO, shared	52 (23%)	41 (18%)	65 (19%)	122 (35%)			
PNetCDF, shared	81 (36%)	38 (17%)	63 (18%)	66 (19%)			
HDF5, shared	23 (10%)	24 (11%)	62 (18%)	68 (20%)			
POSIX, single stream	1.1 (5%)	1.05 (5%)	0.98 (5%)	1.08 (5%)			

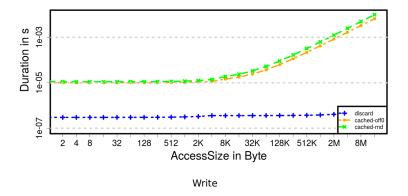
- Metadata measured with Parabench
 - Phase 1: 80 kOPs/s
 - 25 kOP/s for root MDS; 15 kOP/s for DNEs
 - Phase 2: 210 kOPs/s
 - 25 kOP/s for root MDS; 30-35 kOP/s for DNEs

¹1 stripe per file


Performance with Variable Lustre Settings

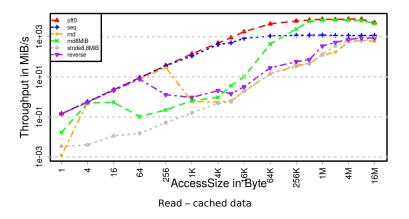
Nodes	PPN	Stripe	W1	W2	W3	R1	R2	R3	Avg. Write	Avg. Read	WNode
1	6	1	3636	3685	1034	4448	5106	5016	2785	4857	2785
2	6	1	6988	4055	6807	8864	9077	9585	5950	9175	2975
10	16	2	16135	24697	17372	27717	27804	27181	19401	27567	1940

I/O Duration with Variable Block Granularity


- Performance of a single thread with sequential access
- Two configurations: discard (/dev/zero or null) or cached
- Two memory layouts: random (rnd) or re-use of a buffer (off0)

Mistral's I/O Performance

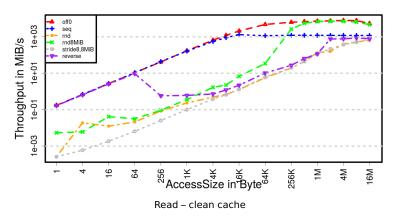
In-Memory Storage 0000


I/O Duration with Variable Block Granularity

- Memory layout has a minor impact on performance
- \Rightarrow In the following, we'll analyze only accesses from one buffer

In-Memory Storage

Throughput with Variable Granularity

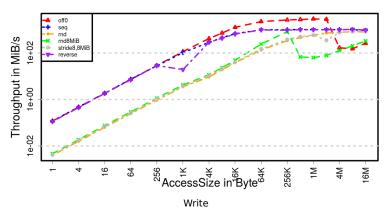


- Caching (of larger files, here 10 GiB) does not work
- Sequential read with 16 KiB already achieves great throughput
- Reverse and random reads suffer with a small granularity

Mistral's I/O Performance

In-Memory Storage 0000

Throughput with Variable Granularity



Read cache is not used

Except for accesses below 256 bytes (compare to the prev. fig.)

In-Memory Storage 0000

Throughput with Variable Granularity

- Writes of 64 KiB achieve already great performance
- Reverse file access does not matter
- Abnormal slow behavior when overwriting data with large accesses (off0, rnd8MiB)

Mistral's I/O Performance

BT 2

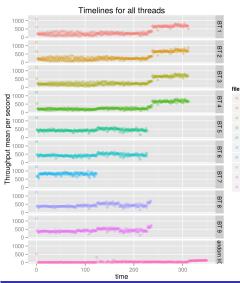
BT 3

BT 4

BT 5

BT 6

BT 7


BT 8

BT 9

random I/O

In-Memory Storage

(Unfair) Sharing of Performance

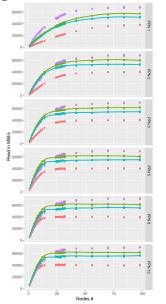
- Storage == shared resource
- Independent file I/O on one OST
- Running 9 seq. writers concurrently (10 MiB blocks)
- BT1 One random writer (1 MiB blocks)
 - Each client accesses 1 stripe
 - Each client runs on its own node
 - Observations
 - BT: 3 performance classes
 - RND without background threads: 220 MiB/s
 - RND with 9 threads: 6 MiB/s
 - Slow I/O dominated by well-formed I/O
 - Reason: IB routing

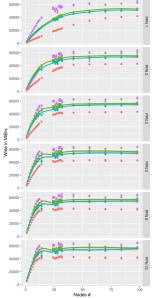
Lustre I/O Statistics

- Statistics on the client help understand behavior (a bit)
- /proc/fs/lustre/llite/lustre01-*/stats
- /proc/fs/lustre/llite/lustre01-*/read_ahead_stats

Тур	Lay- out		numa_ local	hits	misses	intr	softirq	read b_avg	read calls	write b_avg	write calls		osc_read calls	osc_write avg	osc_write calls	Perf. in MiB/s
WD	off0	256K	263K	0	0	0.9-1K	1.8-2K	201	3	40K	5	0	0	32K	0-6	1.1T
WC	off0	256K	264K	0	0	2.8-3.3K	6.1-7.1K	201	3	262K	10005	0	0	256K	1.1	2.6G
WC	seq	256K	940K	0	0	16-18K	26-30K	201	3	262K	10005	0	0	4M	625	1G
WC	rnd	256K	937K	0	0	125K	34K	201	3	262K	10005	4096	19K	3.9M	673.6	341M
WC	rev	256K	942K	0	0	23K	28-77K	201	3	262K	10005	0	0	4M	626	963M
R D	off0	256K	263K	0	0	1.1-1.4K	2.4-3K	201	3	40K	5	0	0	42K	0.4	14G
RC	off0	256K	264K	63	1	1.4-1.9K	2.9-3.9k	256K	10003	40K	5	256K	1	0	0	5.9G
RC	seq	256K	931K	640K	3	25-60k	28-111K	256K	10003	57K	5	1M	2543	80K	0.4	1.1G
RC	rnd	256K	1559K	615K	16K	136-142k	43k-65k	256K	10003	58K	5	241K	20K	180K	4	33M
RC	rev	256K	930K	629K	10K	70-77K	23-47K	256K	10003	58K	5	256K	9976	104K	0-3	56M
RU	off0	256K	264K	63	5	1.5-2k	2.9-3.9k	256K	10003	40K	5	64K	5	0	0	6.2G
RU	seq	256K	946K	640K	6	25-42k	32-74k	256K	10003	57K	5	1M	2546	0	0	1.2G
Run	s wit	h acce	essSize	of 1 M	B and a	1 TB file.	caching d	on the	client is ı	not pos	sible. For	sea. 1M	repeats a	are perfor	med. for r	andom 10k:
W	seq	1M	259M	0	1.3	8-12M	14-23M		3		1000013			4M	250K	1007
W	rnd	1M	2.9M	0	0-3	161K	114K	201	3	1M	10006	4097	20K	3.2M	3309	104
R	seq	1M	257M	255M	2	16-22M	28-38M	1M	1000003	2.5M	12	1M	1000K	3M	10	1109
R	rnd	1M	5M	2M	9753		157-161K	1M	10003	60K	5	836K	24K	100K	3	55
Accessing 1TB file with 20 threads, aggregated statistics, but performance is reported per thread:																
W	seq	1M	260M	0-1	0-3	12M	23M		58	1M	990K		1-3	4.1M	254K	250
W	rnd	1M	246M	0	0	18M	13M	201	58	1M	960K	4096	1.8M	3.1M	320K	138
R	seq	1M		250M	480K	9.8M	12M	1M		21-24K		1.6M	630K	717K	41	168
R	rnd	1M	481M	240M	900K	20M	16M	1M	950K	20-23K	0.2-1.2K	832K	2.3M	523K	36	47

Deltas of the statistics from /proc for runs with access granularity of 256 KiB and 1 MiB (mem-layout is always off0). In the type column, D stands for discard, C for cached and U for uncached. 1TB files do not fit into the page cache.

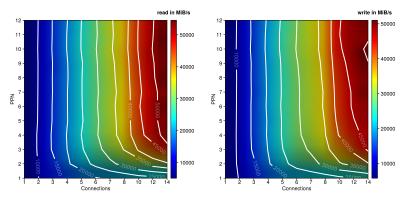

In-Memory Storage

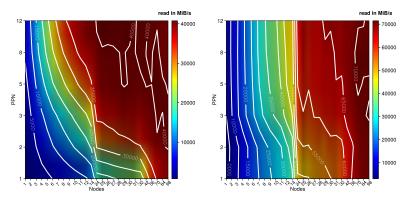

Benchmarking of Kove XPD

- Use case: burst buffer, in-situ ?
- In memory I/O
- Persists data onto 24 HDDs
- Takes 10 min to synchronize system (under full load)
- Three devices with 6+4+4 = 14 IB links
 - Peak performance: 70 GiB/s
- Created an MPI-IO wrapper to their KDSA library
- Benchmarked random I/O with IOR
 - Sequential behaves similarly (!)

In-Memory Storage

Varying Client Node Count, PPN, Block Size




In-Memory Storage

Varying Number of Connections

- 100 KB accesses
- 14 nodes

Performance Map for Reads

16 KiB and 1 MiB accesses (beware the color scaling)