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Storage expenses

Motivation

Gap between computation and storage

Capacity and performance continue to increase exponentially
Di�erent components improve at di�erent speeds

I/O is becoming an increasingly important problem
Data can be produced faster but it becomes harder to store it

Consequence: Spend more money on storage
Results in less available money for computation
Or more expensive systems overall

Storage becomes a considerable portion of the TCO
DKRZ: 8,500× 10 W = 85 kW≈ 110,000e per year
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Figure: Development of CPU speed, HDD capacity and HDD speed

Processor speed: 400x every ten years (based on TOP500)
Disk capacity: 100x every ten years
Disk speed: 20x every ten years
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Motivation

Example: DKRZ

2009 2015 Factor
Performance 150 TF/s 3 PF/s 20x
Nodes 264 2,500 9.5x
Node performance 0.6 TF/s 1.2 TF/s 2x
System memory 20 TB 170 TB 8.5x
Storage capacity 5.6 PB 45 PB 8x
Storage throughput 30 GB/s 400 GB/s 13.3x
Disk drives 7,200 8,500 1.2x
Archive capacity 53 PB 335 PB 6.3x
Archive throughput 9.6 GB/s 21 GB/s 2.2x
Power consumption 1.6 MW 1.4 MW 0.9x
Investment 30 Me 30 Me 1x
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Motivation

Future Procurements

2020 2025 Exascale (2020)
Performance 60 PF/s 1.2 EF/s 1 EF/s
Nodes 12,500 31,250 100k–1M
Node performance 4.8 TF/s 38.4 TF/s 1–15 TF/s
System memory 1.5 PB 12.8 PB 3.6–300 PB
Storage capacity 270 PB 1.6 EB 0.15–18 EB
Storage throughput 2.5 TB/s 15 TB/s 20–300 TB/s
Disk drives 10,000 12,000 100k–1M
Archive capacity 1.3 EB 5.4 EB 7.2–600 EB
Archive throughput 57 GB/s 128 GB/s —
Power consumption 1.4 MW 1.4 MW 20–70 MW
Investment 30 Me 30 Me 200 M$
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Motivation

Approaches

We would like to keep storage investments stable
Amount of data has to be reduced somehow

First step: Figure out how much data actually costs
Important to di�erentiate di�erent types of costs
Cost model for computation, storage and archival

Investigate and compare several data reduction techniques
Recomputation, deduplication, compression
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Storage expenses model

Model

Simplified model, approximating the costs for running an
application and storing data

Unified previous models for analyzing Exascale I/O scenarios
Costs of components are accounted for based on their
utilization

Fraction of nodes needed for the job
Costs for the fraction of the throughput, metadata and occupied
space over time
Number of tape media required to store the data

Maintenance by the vendor is usually included in the
acquisition costs
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Storage expenses model

Limitations

Acquisition costs of the data center building are not covered
Sta� expenses for maintaining the data center are not covered
Network infrastructure and its utilization are not covered
I/O does not interfere with the compute performance

Completely hidden by asynchronous techniques

Code ports and optimizations are out of scope
Expenses caused by idling compute nodes or empty storage
space are not covered
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Storage expenses model

CMIP5

Part of the AR5 of the IPCC
Coupled Model Intercomparison Project Phase 5
Climate model comparison for a common set of experiments

More than 10.8 million processor hours at DKRZ
482 runs, simulating a total of 15,280 years
A data volume of more than 640 TB has been created
Post-processing refines data into 55 TB

Prototypical low-resolution configuration:
A year takes about 1.5 hours on the 2009 system
Finishes by creating a checkpoint (4 GB)
Another job that restarts from the checkpoint
Every 10th checkpoint is kept and archived
A month of simulation accounts for 4 GB of data

Data was stored on the file system for almost three years
Archived for 10 years
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Storage expenses model

CMIP5. . .

CMIP5
System 2009 2015 2020 2025
Compute 10.50 0.55 0.03 0.001

Storage
Supply costs 45.02 5.60 0.93 0.16
Access costs 0.09 0.01 0 0
Metadata costs 0.04 0 0 0

Checkpoint 0 0 0 0
Archival 10.35 1.66 0.41 0.10
Sum 66.01 7.82 1.38 0.26

Table: CMIP5 costs

2009: compute cost≈ archival cost
Storage costs much higher than compute costs

Storage and archival get (relatively) more expensive
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Storage expenses model

HD(CP)2

Improve the understanding of cloud and precipitation
processes and their implication for climate prediction

High Definition Clouds and Precipitation for Climate Prediction

A simulation of Germany with a grid resolution of 416 m
The run on the DKRZ system from 2009 needs 5,260 GB of
memory
Simulates 2 hours in a wallclock time of 86 minutes
Model results are written every 30 model minutes
A checkpoint is created when the program terminates
Output has to be kept on the global file system for only one
week
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Storage expenses model

HD(CP)2. . .

HD(CP)2

System 2009 2015 2020 2025
Compute 165.07 8.72 0.44 0.02

Storage
Supply costs 2.37 0.30 0.05 0.01
Access costs 0.94 0.07 0.01 0
Metadata costs 0 0 0 0

Checkpoint 0.33 0.02 0 0
Archival 86.91 13.91 3.48 0.87
Sum 255.29 22.99 3.97 0.90

Table: HD(CP)2 costs

Higher compute costs than CMIP5
2009: compute cost≈ 2× archival cost

Low storage costs because data is moved to archive faster
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Data reduction techniques

Concepts

There are several concepts to reduce the amount of stored data
Recomputation of results

Do not explicitly store results but recompute them on demand
Deduplication

Store identical chunks of data only once
Compression

Data can be compressed by the application or the file system
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Recomputation

Overview

Do not store all produced data
Analyze data in-situ

Requires a careful definition of the analyses
Post-mortem data analysis is impossible
A new analysis requires repeated computation

Recomputation can be attractive
If the costs for keeping data are substantially higher than
recomputation costs

Cost of computation is higher than the cost for archiving the
data in 2009

Computational power continues to improve faster than storage
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Recomputation

Analysis

2015
Recomputation worth it if the data is only accessed less than
once (HD(CP)2) or 13 (CMIP5) times

2020
HD(CP)2: recompute if data is accessed less than eight times
CMIP5: archival more cost-e�icient when the data is accessed
more than 44 times

2025
Recomputation feasible until the data has to be accessed more
than 44 (HD(CP)2) or 260 (CMIP5) times
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Recomputation

Problems: Binary preservation

Preserve binaries of application and all dependencies
Much easier due to containers and virtual machines

E�ectively impossible to execute the application on di�ering
future architectures

x86-64 vs. POWER, big endian vs. little endian

Emulation usually has significant performance impacts
Recomputation on the same supercomputer appears feasible

Keep dependencies (versioned modules), link statically
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Recomputation

Problems: Source preservation

All components can be compiled even on di�erent hardware
architectures

Might need additional work
Di�erent operating system, compiler etc.
Alternatively, preserve the exact dependencies

Changes to minute details could lead to di�ering results
Di�erent processors, network technology etc.
Might not matter if results are still “statistically equal”
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Deduplication

Overview

Data is split up into (possibly variably-sized) blocks (4–16 KB)
Each unique block of data is stored only once

A reference to the original block is created for each repeated
occurrence

Previous study for HPC data showed 20–30 % savings
Total amount of more than 1 PB
Full-file deduplication: 5–10 %

There are downsides
Memory overhead for deduplication tables
Per 1 TB of data, approximately 5–20 GB
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Deduplication

Overhead

Deduplication tables store references between the hashes and
the actual data blocks

SHA256 hash function (256 bits = 32 bytes)
8 KB file system blocks (using 8 byte o�sets)
Additional data structure overhead of 8 bytes per hash

Have to be kept in main memory for e�icient online
deduplication

Duplicates have to be looked up for each write operation
Fast storage devices are still orders of magnitude slower

1 TB÷ 8KB = 125, 000, 000
125, 000, 000 · (32B + 8B + 8B) = 6GB (0.6%)
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Deduplication

Analysis

2009 2015 2020 2025
Storage 5.6+1.68PB 45+13.5PB 270+81PB 1.6+0.48 EB
Memory 20+33.6 TB 170+270 TB 1.5+1.62PB 12.8+9.6PB
Power 1.6+0.24MW 1.4+0.20MW 1.4+0.14MW 1.4+0.09MW
Cost 30+2.52Me 30+2.38Me 30+1.62Me 30+1.13Me

Table: Benefits and overhead due to deduplication

Assume optimistic savings of 30 %
Needs more additional main memory than is already installed
(except for 2025)
Requires significantly more power (5–15 %)
Increases overall costs (3–8 %)
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Deduplication

Analysis. . .

2009 2015 2020 2025
4.3+1.3PB 34.6+10.4PB 207.7+62.3PB 1.2+0.4 EB

20+25.8 TB 170+207.7 TB 1.5+1.2PB 12.8+7.4PB
1.54+0.19MW 1.34+0.15MW 1.34+0.1MW 1.34+0.07MW

28.27+1.94Me 28.27+1.83Me 28.27+1.25Me 28.27+0.87Me

Table: Deduplication overhead for same storage capacity

Use deduplication to achieve to same overall storage capacity
Still requires significant amount of main memory
Power consumption increases (up to 8 %)
Overall costs decrease from 2020 on
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Deduplication

Conclusion

Larger block sizes significantly reduce memory overhead
8 KB→ 0.6 %, 16 KB→ 0.3 %, 32 KB→ 0.15 %
Impact on deduplication ratio has to be considered

Full-file deduplication
Does not save I/O bandwidth
File has to be written completely first

O�line deduplication
Leverage modern copy-on-write-capable file systems
Useful for full-file deduplication
Not as performance critical
Not necessary to keep hash tables in main memory
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Compression

Overview

Measure most important performance metrics for di�erent
compression algorithms

Compression ratio, processor utilization, power consumption,
runtime

Using≈ 500 GB of climate data (MPI-OM)
Preliminary tests using repeated and random data
Serial tests to determine baseline information
Parallel test for real-world applicability
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Compression

Tracing
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Figure: Infrastructure for Lustre and power-performance analysis
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Compression

Tracing. . .

Normal Lustre installation
Clients and servers hosted on di�erent machines

Additional instrumentation
Normal VampirTrace for client applications
pmserver on file system servers
Power tracing server

Connected to wattmeters

pmlib plugin allows merging client and server activity
Useful to correlate activities
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Compression

Algorithms

Comp. Comp. CPU Runtime
Algorithm Ratio Util. Ratio
none 1.00 23.7 1.00
zle 1.13 23.8 1.04
lzjb 1.57 24.8 1.09
lz4 1.52 22.8 1.09

gzip-1 2.04 56.6 1.06
gzip-9 2.08 83.1 13.66

Table: Performance metrics for climate data

Runtime increases only slightly (except for higher gzip levels)
gzip increases CPU utilization significantly
⇒ Use lz4 (and gzip-1)
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Compression

Overview

Comp. Comp. CPU Runtime
Algorithm Ratio Util. Ratio
none 1.00 23.7 1.00
lz4 126.96 15.8 1.28

gzip-1 126.96 23.3 1.24

Table: Repeated data

Produced using the yes utility
lz4 uses less CPU than without compression
Both algorithms increase runtime by≈ 25 %
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Compression

Overview

Comp. Comp. CPU Runtime
Algorithm Ratio Util. Ratio
none 1.00 23.5 1.00
lz4 1.00 24.1 0.97

gzip-1 1.00 66.1 1.03

Table: Random data

Produced using the frandom kernel module
gzip-1 increases CPU utilization significantly
Both algorithms have negligible impact on runtime
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Compression

Parallel Application

Comp. Runtime Power Energy
Algorithm Ratio Ratio Ratio
none 1.00 1.00 1.00
lz4 0.92 1.01 0.93

gzip-1 0.92 1.10 1.01

IOR benchmark, adapted to simulate realistic write activities
Application performance is not reduced

Due to higher throughput on storage servers
Energy consumption was decreased for lz4

Lower runtime combined with the negligible power
consumption increase

Even gzip-1 increases energy consumption by only 1 %
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Compression

Compression Analysis

2009 2015 2020 2025
Storage 5.6+2.8PB 45+22.5PB 270+135PB 1.6+0.8 EB
Power 1.6+0.025MW 1.4+0.025MW 1.4+0.025MW 1.4+0.025MW

Table: Benefits and overhead of compression

Assume compression ratio of 1.5 for lz4
Pessimistic power consumption overhead of 10 %
Runtime ratio of 1.0
Probably not necessary to purchase more powerful processors
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Compression

Conclusion

Compression can significantly increase the storage capacity
Appropriate algorithms have only negligible overhead

No additional hardware investments are necessary
Marginal increase in the storage system’s power consumption

The overall e�ect is still very beneficial

Application-specific compression algorithms can further
improve compression ratios
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Advanced compression

Overview

Compression in the file system can already be used today
Lustre supports ZFS backend
Turn on compression in ZFS

Currently only static approaches for compression
One compression algorithm per file system
We would like to use a more dynamic approach

Use semantical information to improve compression
Even adaptive compression needs to guess
More e�icient application-specific compression
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Advanced compression

Overview. . .

ZFS
compressed

Application
uncompressed

Network
uncompressed

Lustre
uncompressed

OSTs

OSSsStorage

MDTs

MDSs

Data Flow

+ No app. modifications

+ No impact on computation

- No savings

+ No Lustre modifications

- ZFS (Lustre 2.4) required

- CPU overhead (negligible)

- Energy overhead (~1%)

Figure: Lustre architecture with ZFS compression
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Advanced compression

Feature Wishlist

Properly support compression in the file system
Make it an actual feature
Interaction with application-specific compression

Allow developers to specify useful information
Additional knowledge about data (variance, patterns etc.)
Leverage semantical information across the whole stack

Provide data reduction at a central layer
Currently, all layers implement their own solutions
Redundant operations, wrong ordering etc.
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Advanced compression

File system support

Support desirable at di�erent levels
On servers, clients and within applications

Each has advantages and disadvantages
Compression on the client influences computation but can save
network bandwidth
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File system support. . .

ZFS
compressed

Application
compressed

Network
compressed

Lustre
compressed

OSTs

OSSsStorage

MDTs

MDSs

Data Flow

+ No app. modifications

- CPU overhead (negligible)

+ Network throughput inc.

+ Proper interaction

- Lustre modifications

- CPU overhead (negligible)

- Energy overhead (~1%)

Figure: Lustre architecture with advanced compression support
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Advanced compression

File system support. . .

Compression is not supported on the clients
Add support to Lustre’s client
Completely transparent to applications
Configurable via ladvise

Compression is static
Add support for adaptive compression
Can use information about the data, the current load etc.
Useful on both the clients and servers
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Adaptive compression

Added support for adaptive compression to ZFS
Directly usable by Lustre

Support for di�erent modes
Such as performance, archival and energy

Di�erent heuristics to determine compression algorithm
Based on the file type or cost function

All algorithms are tried for cost function
Best one is chosen for the next batch of operations
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Adaptive compression. . .
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Figure: System utilization compressing mixed file using gzip-1
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Adaptive compression. . .
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Figure: System utilization compressing mixed file using archive mode

Michael Kuhn Storage expenses and data reduction techniques 41 / 46



Storage expenses
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Application Interaction

ADIOS provides an expressive I/O interface
Abstract description of applications’ I/O using XML

Extend to support advanced data reduction
Already o�ers some helpful functionality

Data transformations
adios_{start,stop}_calculation
adios_end_iteration
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Application Interaction. . .

Extend with further semantical information
Compressibility etc.

<adios-config host-language="C">
<adios-group name="checkpoint">

<var name="matrix" type="double" dimensions="..."
↪→ variance="low"
↪→ transform="compression:performance"/>

</adios-group>
</adios-config>

Listing 1: ADIOS extensions
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Conclusion

Recomputation: not all results are stored; negative e�ects if the
results have to be recomputed frequently
Deduplication: do not store duplicate data; additional overhead
to check for duplicate data
Compression bears the potential to reduce the TCO significantly

Client memory and network utilization can also be reduced
Useful for data not compressed by the scientists explicitly

User education: potential to improve overall utilization
More e�icient code, data structures, communication schemes
and file formats
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Conclusion. . .

A proper analysis of all cost factors and usage characteristics
allows an optimal configuration
Predicted characteristics of the next DKRZ supercomputers

Computational power grows by 20x every generation
Storage capacity increase of 8x lags behind

Approximate costs for computation, storage and archival
Cost models for long-term archival
Keeping data available is dominating the costs
And it will get worse!
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Future Work

We plan to elaborate the cost model
Use it to make decisions for new applications
Potential source of future cost savings

Continue to analyze the users’ workflow
Identify suboptimal usage scenarios and mitigate their impact

Explore the benefits of adaptive compression
Interfaces that enable more intelligent compression using
semantical information

Michael Kuhn Storage expenses and data reduction techniques 46 / 46


	Storage expenses
	Motivation
	Storage expenses model
	Data reduction techniques
	Recomputation
	Deduplication
	Compression
	Advanced compression
	Conclusion


