High-Performance I/O @ Mistral

Julian M. Kunkel

kunkel@dkrz.de

German Climate Computing Center (DKRZ)

06-10-2015

Outline		

1 Mistral's Storage System

2 Performance

3 Tunables

4 Obstacles and R&D

Mistral's Storage System

ClusterStor Servers

0000

Photo by Carsten Beyer

Mistral's Storage System O●OO		
I/O Architecture (to be extended)	

- 29 ClusterStor 9000 Scalable Storage Units (SSUs)
 - SSU: Active/Active failover server pair
- Single Object Storage Server (OSS)
 - 1 FDR uplink
 - GridRaid: (Object Storage Target (OST))
 - 41 HDDs, de-clustered RAID6 with 8+2(+2 spare blocks)
 - 1 SSD for the Log/Journal
 - 6 TByte disks
- 29 Extensions (JBODs)
 - Do not provide network connections
 - Storage by an extension is managed by the connected SSU
- Multiple metadata servers
 - Root MDS + 4 DNE MDS
 - Active/Active failover (DNEs, Root MDS with Mgmt)
 - DNE phase 1: Assign responsible MDS per directory

Mistral's Storage System OO●O		

Parallel File System

Lustre 2.5 (+ Seagate patches: some backports)

Distribution of data

- Lustre can distribute a file across multiple servers (and storage devices called OST)
- Stripe size: Amount of data per OST
- Stripe count: Number of OSTs to store data

General Performance Characteristics

- Client-side caching of reads/writes
 - Dirty data can be drained later
- No server-sided caching
 - I/O requests are directly served by a local file system
- Locking for consistency
 - Read/writes require some communication
- Pre-fetching for sequential reads

Mistral's Storage System OOO●		
Filesystem		

Filesystem

- We have only one file system: /mnt/lustre01
- Symlinks: /work, /scratch, /home, ...
- However, each metadata server behaves like a file system

Assignment of MDTs to Directories

- In the current version, directories must be assigned to MDTs
 - /home/* on MDT0
 - /work/[projects] are distributed across MDT1-4
 - /scratch/[a,b,g,k,m,u] are distributed across MDT1-4
- Data transfer between MDTs is currently slow (mv becomes cp)
- Lustre will be updated with a fix :-)

	Performance •••••••	
Peak Performand	e	

- 29 SSUs · (2 OSS/SSU + 2 JBODs/SSU) = 58 OSS and 116 OSTs
- **1** Infiniband FDR-14: 6 GiB/s \Rightarrow 348 GiB/s
- 1 ClusterStor9000 (CPU + 6 GBit SAS): 5.4 GiB/s ⇒ **313 GiB/s**

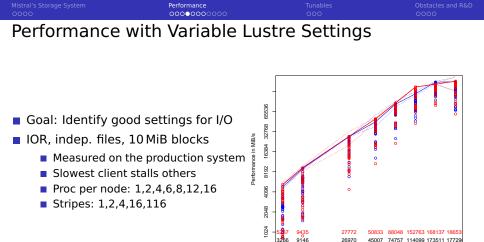
	Performance ○●○○○○○○○○		
Performance Resu	ults from Accept	ance Tests	

Throughput measured with IOR

- Buffer size 2000000 (unaligned)
- 84 OSTs (Peak: 227 GiB/s)
- 168 client nodes, 6 procs per node

Туре	Read	Write	Write rel. to peak
POSIX, independent ¹	160 GB/s	157 GB/s	70%
MPI-IO, shared ²	52 GB/s	41 GB/s	18%
PNetCDF, shared	81 GB/s	38 GB/s	17%
HDF5, shared	23 GB/s	24 GB/s	10%
POSIX, single stream	1.1 GB/s	1.05 GB/s	0.5%

- Metadata measured with a load using Parabench: 80 kOPs/s
- 25 kOP/s for the root MDS and 15 kOP/s for each DNE MDS


¹1 stripe per file

²84 stripes per file on 21 SSUs

	Performance	
Observations to T	ake Away	

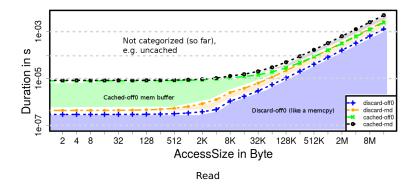
Iulian M. Kunkel

- Single stream performance is much lower than on Blizzard
 - Multiple threads need to participate in the I/O
 - 12 to 16 are able to (almost) utilize Infiniband
 - Independent I/O to independent files is faster
 - An optimized file format is important for fast I/O
 - e.g. NetCDF4/HDF5 achieves < 1/2 performance of PNetCDF
 - Benchmarking has shown a high sensitivity with proper configuration
 - 4x improvement is often easy to achieve
 - \Rightarrow Let us vary the thread count (PPN), stripe count and node count

Best settings for read (excerpt)

W2 W3 R1 R2 R3 Avg. Write Avg. Read WNode Nodes PPN Stripe W1

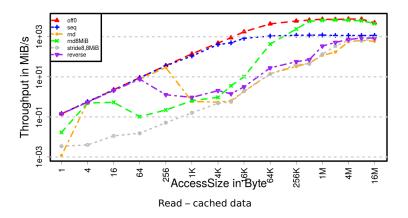
of nodes


114099 173511 17729

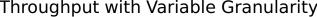
Testing Defaults: Which Stripe Count & PPN to pick?

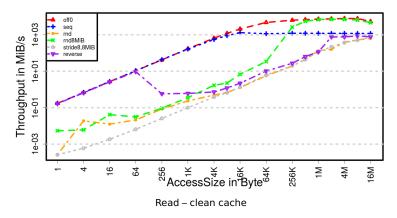
Stripes	PPN	RNode	WNode	R arithmetic mean	W arithmetic mean	RHarmonic	WHarmonic
1	1	788	780	34	32	52	53
1	2	1214	1155	53	47	75	71
1	4	1352	1518	59	62	81	79
1	6	2179	1835	95	75	91	88
1	8	1943	2235	84	92	86	93
1	12	1974	1931	86	79	92	84
1	16	1890	1953	82	80	84	72
2	1	734	763	32	31	51	51
2	2	1165	1182	50	48	72	72
2	4	1814	1745	79	71	87	85
2	6	1935	1693	84	69	88	83
2	8	1726	2039	75	84	88	89
2	12	1780	2224	77	91	90	92
2	16	1806	1752	79	72	79	75
4	1	726	761	31	31	49	51
4	2	1237	1185	54	48	70	66
4	4	1737	1744	75	71	85	84
4	6	1719	1888	75	77	85	86
4	8	1751	1931	76	79	87	90
4	12	1841	1972	80	81	87	89
4	16	1745	2064	76	85	72	74
16	1	743	726	32	29	48	49
16	2	1109	1216	48	50	66	71
16	4	1412	1554	61	64	75	81
16	6	1489	1812	65	74	72	85
16	8	1564	1841	68	75	79	90
16	12	1597	1939	69	79	71	78
16	16	1626	1900	71	78	64	68
116	1	588	432	25	17	34	31
116	2	871	773	38	31	44	52
116	4	1270	1258	55	51	53	69
116	6	1352	978	59	40	52	51
116	8	1397	901	61	37	56	47
116	12	1470	1020	64	42	55	46
116	16	1503	1147	65	47	55	42

- Performance of a single thread with sequential access
- Two configurations: discard (/dev/zero or null) or cached
- Two memory layouts: random (rnd) or re-use of a buffer (off0)



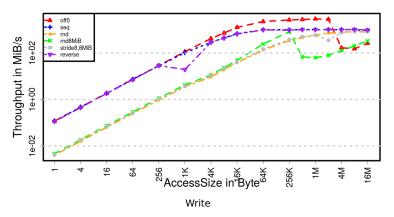
	Performance 00000000000		
I/O Duration with	Variable Block G	Granularity	


- Memory layout has a minor impact on performance
- \Rightarrow In the following, we'll analyze only accesses from one buffer

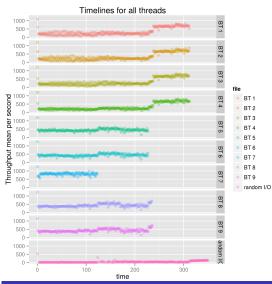


- Caching (of larger files, here 10 GiB) does not work
- Sequential read with 16 KiB already achieves great throughput
- Reverse and random reads suffer with a small granularity

Throughput	ith Variable Cra	pularity/	
	00000000000		
	Performance		



Read cache is not used


Except for accesses below 256 bytes (compare to the prev. fig.)

- Writes of 64 KiB achieve already great performance
- Reverse file access does not matter
- Abnormal slow behavior when overwriting data with large accesses (off0, rnd8MiB)

		Tunables ●OO	
Performance Issu	es & Tunables		

A few slow servers significantly reduce IOR performance

- Also: Congestion on IB routes degrade performance
- Interference between I/O intense and communication intense jobs
- Use a small number of stripes (for small files up to a few GiB)
 - On our system the default is 1

I/O has to wait for the slowest server

- Create a new file with a fixed number: lfs setstripe <file>
- Information: lfs [getdirstripe|getstripe] <file|dir>
- For highly parallel shared file access increase the striping
 - Performance is max. 5 GiB/s per stripe
- Avoid "Is -I"
 - It must query the size of all stripes from the OSTs
- Avoid moving data between different MDTs
- MPI Hints

	Laguage C. Tungahla	- (2)	
0000		000	0000
Mistral's Storage System	Performance	Tunables	Obstacles and R&D

Performance Issues & Tunables (2)

Changing Lustre's striping policy

1	<pre># create two stripes with 10 MiB striping # lfs stateting = 2 = 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>								
2	\$ lfs setstripe -c 2 -S \$((1024*1024*10)) myfile								
3	# query the information about myfile								
4	# obidx shows the OST number								
5	\$ lfs getstripe myfile								
6	myfile								
7	lmm_stripe_count: 2								
8	lmm_stripe_size: 10485760								
9	lmm_pattern: 1								
10	lmm_layout_gen: 0								
11	lmm_stripe_offset: 6								
12	obdidx objid objid group								
13	6 9258354 0x8d4572 0								
14	40 5927139 0x5a70e3 0								

Performance Issues & Tunables (3)

MPI Hints

- Hints that have been proven useful during the acceptance test
- Collective access to shared files is useful for writes

```
1 # collective I/0
2 romio_cb_read = disable # serve each operation individually
3 romio_cb_read = disable # use two-phase I/O optimization
4
5 romio_no_indep_rw = false # can be true only if using collective I/O
6 # non-contiguous optimization: "data sieving"
7 romio_ds_read = disable # do not use data sieving
8 romio_ds_write = enable # may use data sieving to filter
9 romio_lustre_ds_in_coll = enable # may use ds in collective I/O
10 romio_lustre_co_ratio = 1 # Client to OST ratio, max one client per OST
11 direct_read = false # if true, bypass OS buffer cache
12 direct_write = false # if true, bypass OS buffer cache
```

Lack of knowledge

Usage of file formats and middleware libraries is limited

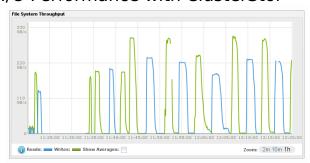
- Analysis of file extensions does not suffice
- Library usage could theoretically be monitored, but ...
- The workflows are sometimes diffuse
- The cause of innefficient operations is unknown

Shared nature of storage

- With 1/60th of nodes one can drain 1/7th of I/O performance
 - \Rightarrow 10% of nodes drain all performance
 - Since applications are not doing I/O all the time this seems fine
- But: interaction of I/O may degrade performance
 - I/O intense benchmark increased application runtime by 100%
- Metadata workloads are worse, problematic with broken scripts

		Obstacles and R&D ○●○○
Obstacles		

Difficulties in the analysis


- Performance is sensitive to I/O patterns, concurrent activitity
- Infiniband oversubscription
- Application-specific I/O servers increase complexity
- Capturing a run's actual I/O costs vs. shared access
- Lustre's (performance) behavior

Others

- Outdated (and inefficient) file formats are still dominant
- Capability increase from Blizzard to Mistral³
 - Compute performance by 20x
 - Storage performance by 20x
 - Storage capacity by 7x

³This is a projection for the full system

Top System Sta	itistics			
	Metric			Capacity Overview
File System	Peak Read	274.34	GB/s	
	Current Read	45.6	KB/s	75.1%
	Peak Write	308.37	GB/s	
	Current Write	222.54	GB/s	
Metadata	Current Operations	0	Op/s	
Storage	Number of OSTs in use	116		24.9%
	Number of Disks in use	4,882		
	Capacity in use	4.78	PB	Used: 4.78 PB
	Capacity available	14.41	PB	Available: 14.41 PB
Power	Current cluster usage	70.17	KW	

Mistral's Storage System

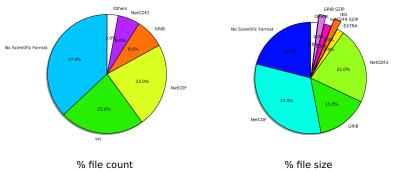
Lustre I/O Statistics

- Statistics on the client help understand behavior (a bit)
- /proc/fs/lustre/llite/lustre01-*/stats
- /proc/fs/lustre/llite/lustre01-*/read_ahead_stats

Тур	Lay- out		numa_ local	hits	misses	intr	softirq	read b_avg	read calls	write b_avg	write calls	osc_read avg	osc_read calls	osc_write avg	osc_write calls	Perf. in MiB/s
WD	off0	256K	263K	0	0	0.9-1K	1.8-2K	201	3	40K	5	0	0	32K	0-6	1.1T
wo	off0	256K	264K	0	0	2.8-3.3K	6.1-7.1K	201	3	262K	10005	0	0	256K	1.1	2.6G
	seq			0	0	16-18K	26-30K	201	3	262K	10005	0	0	4M	625	1G
wo	rnd	256K	937K	0	0	125K	34K	201	3	262K	10005	4096	19K	3.9M	673.6	341M
WC	rev	256K	942K	0	0	23K	28-77K	201	3	262K	10005	0	0	4M	626	963M
R D	off0	256K	263K	0	0	1.1-1.4K	2.4-3K	201	3	40K	5	0	0	42K	0.4	14G
RC	off0	256K		63	1	1.4-1.9K	2.9-3.9k	256K	10003	40K	5	256K	1	0	0	5.9G
RC		256K		640K	3	25-60k	28-111K	256K	10003	57K	5	1M	2543	80K	0.4	1.1G
R C	rnd		1559K		16K	136-142k	43k-65k	256K	10003	58K	5	241K	20K	180K	4	33M
RC	rev	256K	930K	629K	10K	70-77K	23-47K	256K	10003	58K	5	256K	9976	104K	0-3	56M
RU	off0	256K	264K	63	5	1.5-2k	2.9-3.9k	256K	10003	40K	5	64K	5	0	0	6.2G
RU	seq	256K	946K	640K	6	25-42k	32-74k	256K	10003	57K	5	1M	2546	0	0	1.2G
Ru	ns wit	h acce	essSize	of 1 Mi	B and a	1 TB file.	caching o	on the	client is r	not poss	sible. For	sea. 1M	repeats a	are perfor	med. for ra	andom 10k:
											1000013	0-8K	0-4	4M	250K	1007
w	seq		259M	0	1.3	8-12M	14-23M	201	2					4141		
W	seq rnd	1M 1M	259M 2.9M	0	1.3 0-3	161K	114K	201	3	1M	10006	4097	20K	3.2M	3309	104
		1M	259M	0				201 1M	3 1000003	1M 2.5M			20K 1000K	3.2M 3M		104 1109
W R R	rnd seq rnd	1M 1M 1M 1M	259M 2.9M 257M 5M	0 255M 2M	0-3 2 9753	161K 16-22M 206K	114K 28-38M 157-161K	201 1M 1M	1000003 10003	1M 2.5M 60K	10006 12 5	4097 1M 836K	20K 1000K 24K	3.2M 3M	3309	104
R R Acc	rnd seq rnd	1M 1M 1M 1M g 1TB	259M 2.9M 257M 5M file wit	0 255M 2M h 20 tl	0-3 2 9753 hreads,	161K 16-22M 206K aggregat	114K 28-38M 157-161K ed statist	201 1M 1M ics, bu	1000003 10003 t perforn	1M 2.5M 60K nance is	10006 12 5 reported	4097 1M 836K I per thre	20K 1000K 24K ad:	3.2M 3M 100K	3309 10 3	104 1109 55
R R Acc W	rnd seq rnd essin seq	1M 1M 1M 1M g 1TB 1M	259M 2.9M 257M 5M file wit 260M	0 255M 2M th 20 tl 0-1	0-3 2 9753 hreads, 0-3	161K 16-22M 206K aggregat 12M	114K 28-38M 157-161K ed statist 23M	201 1M 1M ics, bu 201	1000003 10003 t perforn 58	1M 2.5M 60K hance is 1M	10006 12 5 reported 990K	4097 1M 836K 1 per thre 2-17K	20K 1000K 24K ead: 1-3	3.2M 3M 100K 4.1M	3309 10 3 254K	104 1109 55 250
R R Acc W	rnd seq rnd essin seq rnd	1M 1M 1M 1M 1 M 1 M 1M 1M	259M 2.9M 257M 5M file wit 260M 246M	0 255M 2M h 20 tl 0-1 0	0-3 2 9753 hreads, 0-3 0	161K 16-22M 206K aggregat 12M 18M	114K 28-38M 157-161K ed statist 23M 13M	201 1M ics, bu 201 201	1000003 10003 t perform 58 58	1M 2.5M 60K nance is 1M 1M	10006 12 5 reported 990K 960K	4097 1M 836K 1 per thre 2-17K 4096	20K 1000K 24K ead: 1-3 1.8M	3.2M 3M 100K 4.1M 3.1M	3309 10 3 254K 320K	104 1109 55 250 138
R R Acc W W R	rnd seq rnd seq rnd seq rnd seq	1M 1M 1M 1M 1 M 1M 1M 1M	259M 2.9M 257M 5M file wit 260M 246M 254M	0 255M 2M h 20 tl 0-1 0 250M	0-3 2 9753 hreads, 0-3 0 480K	161K 16-22M 206K aggregat 12M 18M 9.8M	114K 28-38M 157-161K ed statist 23M 13M 12M	201 1M 1M ics, bu 201 201 1M	1000003 10003 t perform 58 58 970K	1M 2.5M 60K hance is 1M 1M 21-24K	10006 12 5 reporteo 990K 960K 0.2-1.2K	4097 1M 836K 1 per thre 2-17K 4096 1.6M	20K 1000K 24K ead: 1-3 1.8M 630K	3.2M 3M 100K 4.1M 3.1M 717K	3309 10 3 254K 320K 41	104 1109 55 250 138 168
	rnd seq rnd essin seq rnd seq rnd	1M 1M 1M 1M 1M 1M 1M 1M 1M 1M	259M 2.9M 257M 5M file wit 260M 246M 254M 481M	0 255M 2M h 20 tl 0-1 0 250M 240M	0-3 2 9753 hreads, 0-3 0 480K 900K	161K 16-22M 206K aggregat 12M 18M 9.8M 20M	114K 28-38M 157-161K ed statist 23M 13M 12M _16M	201 1M 1M 201 201 1M 1M	1000003 10003 t perform 58 58 970K 950K	1M 2.5M 60K 1M 1M 21-24K 20-23K	10006 12 5 reported 990K 960K 0.2-1.2K 0.2-1.2K	4097 1M 836K 1 per thre 2-17K 4096 1.6M .832K	20K 1000K 24K ead: 1-3 1.8M 630K 2.3M	3.2M 3M 100K 4.1M 3.1M 717K 523K	3309 10 3 254K 320K 41 36	104 1109 55 250 138
	rnd seq rnd essin seq rnd seq rnd	1M 1M 1M 1M 1M 1M 1M 1M 1M 1M	259M 2.9M 257M 5M file wit 260M 246M 254M 481M	0 255M 2M h 20 tl 0-1 0 250M 240M	0-3 2 9753 hreads, 0-3 0 480K 900K	161K 16-22M 206K aggregat 12M 18M 9.8M	114K 28-38M 157-161K ed statist 23M 13M 12M _16M	201 1M 1M 201 201 1M 1M	1000003 10003 t perform 58 58 970K 950K	1M 2.5M 60K 1M 1M 21-24K 20-23K	10006 12 5 reported 990K 960K 0.2-1.2K 0.2-1.2K	4097 1M 836K 1 per thre 2-17K 4096 1.6M .832K	20K 1000K 24K ead: 1-3 1.8M 630K 2.3M	3.2M 3M 100K 4.1M 3.1M 717K	3309 10 3 254K 320K 41 36	104 1109 55 250 138 168
	rnd seq rnd seq rnd seq rnd seq rnd	1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M	259M 2.9M 257M 5M 5M 260M 246M 254M 481M C Sta	0 255M 2M 6 20 tl 0-1 0 250M 240M 240M	0-3 2 9753 hreads, 0-3 0 480K 900K CS FrC	161K 16-22M 206K aggregat 12M 18M 9.8M 20M m / pro	114K 28-38M 157-161K ed statist 23M 13M 12M 16M DC FOF F	201 1M 1M 201 201 1M 1M UNS	1000003 10003 t perform 58 970K 950K With ac	1M 2.5M 60K 1M 1M 21-24K 20-23K	10006 12 5 reported 990K 960K 0.2-1.2K 0.2-1.2K granu	4097 1M 836K 1 per thre 2-17K 4096 1.6M 832K arity C	20K 1000K 24K ead: 1-3 1.8M 630K 2.3M 0f 256 f	3.2M 3M 100K 4.1M 3.1M 717K 523K CiB and	3309 10 3 254K 320K 41 36	104 1109 55 250 138 168 47

		Obstacles and R&D OOOO
Relevant R&D) at DKRZ	

We are doing various R&D to improve the situation:


- Monitoring and analysis of I/O on system AND application level
- Optimized data layouts for HDF/NetCDF
- QoS for I/O (interactive vs. large scale runs)
- Evaluate of alternative storage for random workloads
- Compression of data (lossless 1:2.5, lossy > 1:10)
- ! At best without changes on YOUR applications

Please talk to us, if you think you have an I/O issue

Appendix

File Formats

- Problem: File extensions do not match the content
- $\Rightarrow\,$ Sample of files analyzed with file and cdo
 - 25% from home
 - 20% from work/scratch: 1 PB, 26 M files

Scientific file formats for work/scratch

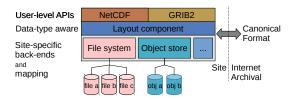
Insights from File Analysis

Home:

- Not much insight
- Mostly code/objects
- Many empty directories, broken links ...

Work/Scratch:

- Many old/inefficient file formats around
- Many small files + TXT
- A small fraction of data volume is compressed:
 - 2% NetCDF and 2% GRIB SZIP, 3% GZIP compressed
- A small fraction (3% of volume) of NetCDF4/HDF5


Dealing with Storage in ESiWACE

H2020 project: ESiWACE Center of Excellence

Work package 4

Partners: DKRZ, STFC, ECMWF, CMCC, Seagate

- 1 Modelling costs for storage methods and understanding these
- 2 Modelling tape archives and costs
- **3** Focus: Flexible disk storage layouts for earth system data
 - Reduce penalties of "shared" file access
 - Site-specific data mapping but simplify import/export
 - Allow access to the same data from multiple high-level APIs

