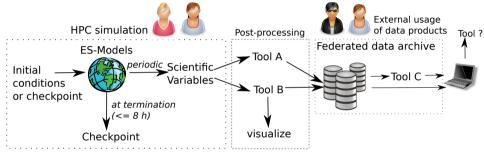
Mistral Supercomputer & I/O

Julian M. Kunkel, Carsten Beyer

kunkel@dkrz.de

German Climate Computing Center (DKRZ)

30-07-2015



Outline

- 2 Obstacles and R&D
- 3 Summary

Scientific Workflow

A typical workflow

Technical background

- Application/domain-specific I/O servers for HPC-IO
- Different post-processing tools
- Involved libraries/formats: NetCDF4 (HDF5), NetCDF3, GRIB, ...

Tape Library with HPSS

- 6 Oracle/StorageTek SL8500 libaries (+ a smaller one)
 - More than 67,000 slots
- One SL8500 library at Garching for backups/disaster recovery
- Variety of tape cartriges/drives
- On Blizzard: 500 TB disk cache
- Update on Mistral: 3 PB disk cache

Mistral Supercomputer

- Phase 1 system, installed Q2/15, Phase 2 system in 2016
- Vendor: Atos (Bull)
- Nodes: 1500 with 2 Intel E5-2680 Haswell@2.5 GHz
 - 24 cores/node
 - 2 Nodes/blade, 9 blades/Chassis, 4 Chassis/Rack
- HPL-performance: 1.1 Petaflop/s, #56 of Top500
- Storage capacity: 20 Petabyte
- Network: FatTree with FDR-14 Infiniband
 - 3 Mellanox SX6536 core 648-port switches
 - 1:2:2 blocking factor
 - 1:1 within chassis (18 nodes)
 - 1:2 9 uplinks per chassis, to 3 linecards on each core switch
 - 1:2 between linecards and spinecards
- Power consumption (HPL): 700 kW

ClusterStor Servers

Phase 1: I/O Architecture

- Lustre 2.5 (+ Seagate patches: some back ports)
- 29 ClusterStor 9000 with 29 Extensions (JBODs)
 - 58 OSS with 116 OST
- ClusterStor 9000 SSUs
 - GridRaid: 41 HDDs, PD-RAID with 8+2(+2 spare blocks)/RAID6, 1 SSD for Log
 - 6 TByte disks
 - SSU: Active/Active failover server pair
 - ClusterStor Manager
 - I FDR uplink/server
- Peak performance
 - Infiniband FDR-14: 6 GiB/s \Rightarrow 348 GiB/s
 - CPU/6 GBit SAS: 5.4 GiB/s \Rightarrow 313 GiB/s
- Multiple metadata servers
 - Root MDS + 4 DNE MDS
 - Active/Active failover (DNEs, Root MDS with Mgmt)
 - DNE phase 1: Assign responsible MDS per directory

Performance Results from Acceptance Tests

Throughput measured with IOR

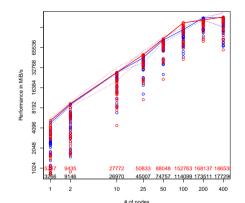
- Buffer size 2000000 (unaligned)
- 84 OSTs (Peak: 227 GiB/s)
- 168 client nodes, 6 procs per node

Туре	Read	Write	Write rel. to peak ²
POSIX, independent ¹	160 GB/s	157 GB/s	70%
MPI-IO, shared ²	52 GB/s	41 GB/s	18%
PNetCDF, shared	81 GB/s	38 GB/s	17%
HDF5, shared	23 GB/s	24 GB/s	10%
POSIX, single stream	1.1 GB/s	1.05 GB/s	0.5%

A few slow servers significantly reduce IOR performance

- Also: Congestion on IB routes degrade performance
- Metadata measured with a load using Parabench: 80 kOPs/s

¹1 stripe per file


²84 stripes per file on 21 SSUs

Summary

Obstacles and R&D

First Performance Results

- Goal: Identify good settings for I/O
- IOR, independent files & 10 MiB blocks
 - Measured on the production system
 - Slowest client stalls others
 - Proc per node: 1,2,4,6,8,12,16
 - Stripes: 1,2,4,16,116

Best settings for read (excerpt)

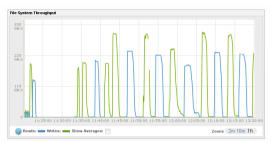
Nodes	PPN	Stripe	W1	W2	W3	R1	R2	R3	Avg. Write	Avg. Read	WNode	RNode	RPPN	WPPN
1	6	1	3636	3685	1034	4448	5106	5016	2785	4857	2785	4857	809	464
2	6	1	6988	4055	6807	8864	9077	9585	5950	9175	2975	4587	764	495
10	16	2	16135	24697	17372	27717	27804	27181	19401	27567	1940	2756	172	121

Defaults: fixed stripe & PPN for running on all numbers of nodes

Stripes	PPN	RNode	WNode	R arithmetic mean	W arithmetic mean	RHarmonic	WHarmonic
1	1	788	780	34	32	52	53
1	2	1214	1155	53	47	75	71
1	4	1352	1518	59	62	81	79
1	6	2179	1835	95	75	91	88
1	8	1943	2235	84	92	86	93
1	12	1974	1931	86	79	92	84
1	16	1890	1953	82	80	84	72
2	1	734	763	32	31	51	51
2	2	1165	1182	50	48	72	72
2	4	1814	1745	79	71	87	85
2	6	1935	1693	84	69	88	83
2	8	1726	2039	75	84	88	89
2	12	1780	2224	77	91	90	92
2	16	1806	1752	79	72	79	75
4	1	726	761	31	31	49	51
4	2	1237	1185	54	48	70	66
4	4	1737	1744	75	71	85	84
4	6	1719	1888	75	77	85	86
4	8	1751	1931	76	79	87	90
4	12	1841	1972	80	81	87	89
4	16	1745	2064	76	85	72	74
16	1	743	726	32	29	48	49
16	2	1109	1216	48	50	66	71
16	4	1412	1554	61	64	75	81
16	6	1489	1812	65	74	72	85
16	8	1564	1841	68	75	79	90
16	12	1597	1939	69	79	71	78
16	16	1626	1900	71	78	64	68
116	1	588	432	25	17	34	31
116	2	871	773	38	31	44	52
116	4	1270	1258	55	51	53	69
116	6	1352	978	59	40	52	51
116	8	1397	901	61	37	56	47
116	12	1470	1020	64	42	55	46
116	16	1503	1147	65	47	55	42

Monitoring Tools

On Mistral


System Perspective

- For compute
 - Nagios (status & performance)
 - Planned: XDMoD (for utilization)
 - Slurm statistics (accounting)
- Seagate's Data Collection System (DCS)
 - Metadata and data rates
 - CPU and MEM utilization
 - Node Health
- Itop
- cscli lustre_perf
- ClusterStor Manager
- Planned: SIOX

On Blizzard

- Nagios
- Ilview (for Load-Leveler)
- Ganglia
- ibview

Monitoring I/O Performance with ClusterStor

Top System Sta	tistics			
	Metric			Capacity Overview
File System	Peak Read	274.34	GB/s	
	Current Read	45.6	KB/s	75.1%
	Peak Write	308.37	GB/s	
	Current White	222.54	GB/s	
Metadata	Current Operations	0	Op/s	
Storage	Number of OSTs in use	116		24.9%
	Number of Disks in use	4,882		
	Capacity in use	4.78	PB	Used: 4.78 PB
	Capacity available	14.41	PB	Available: 📕 14.41 PB
Power	Current cluster usage	70.17	KW	

Obstacles

Lack of knowledge

- Usage of file formats and middleware libraries is limited
 - Analysis of file extensions does not suffice
 - Library usage could theoretically be monitored, but ...
- The workflows of users is sometimes diffuse
- The cause of innefficient operations is unknown

Shared nature of storage

- With 1/60th of nodes one can drain 1/7th of I/O performance
 - \Rightarrow 10% of nodes drain all performance
 - Since applications are not doing I/O all the time this seems fine
- But: interaction of I/O may degrade performance
 - I/O intense benchmark increased application runtime by 100%
- Metadata workloads are worse, problematic with broken scripts

Obstacles

Difficulties in the analysis

- Performance is sensitive to I/O patterns, concurrent activitity
- Infiniband oversubscription
- Application-specific I/O servers increase complexity
- Capturing a run's actual I/O costs
- Lustre's (performance) behavior

Others

- Outdated (and inefficient) file formats are still dominant
- Performance of RobinHood may be too slow (2000 ops/s)
- Capability increase from Blizzard to Mistral³
 - Compute performance by 20x
 - Storage performance by 25-30x
 - Storage capacity by 7x

Relevant R&D

- Monitoring and analysis of I/O on system AND application level
- Monitoring user workflows
- Optimized data layouts for HDF/NetCDF
- Accounting of I/O in Slurm but also with additional granularity
- Reduce interference of concurrent I/O (interactive vs. large scale runs)
- Evaluation of alternative storage backends (DDN's IME, object storage)
- Compression of data (lossless 1:2.5, lossy 1:10)
- ! At best without changes on user apps