
Motivation Background Evaluation Conclusion

A Best Practice Analysis of HDF5 and
NetCDF-4 Using Lustre

Christopher Bartz1, Konstantinos Chasapis2,
Michael Kuhn2, Petra Nerge2, Thomas Ludwig1

1Deutsches Klimarechenzentrum

2University of Hamburg

2015-07-15

1 / 27



Motivation Background Evaluation Conclusion

Agenda

1 Motivation

2 Background

3 Evaluation

4 Conclusion

2 / 27



Motivation Background Evaluation Conclusion

Agenda

1 Motivation

2 Background

3 Evaluation

4 Conclusion

3 / 27



Motivation Background Evaluation Conclusion

Parallel I/O performance

Scientific applications store data in various formats

HDF5 and NetCDF-4 are widely used data formats,
surrounded by high-level I/O interfaces

I/O performance can be crucial to overall performance

I/O can be performed in parallel

Suboptimal I/O performance depending on the application’s
access patterns

4 / 27



Motivation Background Evaluation Conclusion

Goal of analysis

Enable high performance I/O using HDF5 and NetCDF-4

Provide best practices for using I/O

Discover deficiencies and provide enhancements

Therefore, analysis of different access patterns and I/O
configurations

5 / 27



Motivation Background Evaluation Conclusion

Agenda

1 Motivation

2 Background

3 Evaluation

4 Conclusion

6 / 27



Motivation Background Evaluation Conclusion

Overview I

I/O driver

POSIX

MPI-IO

HDF5

NetCDF-4

Application
d
at
a
fl
ow

w
ri
te

re
q
u
es
t read

req
u
est

d
ata

fl
ow

Figure: Involved I/O layers and data flow

7 / 27



Motivation Background Evaluation Conclusion

Lustre

Stores data in a distributed manner

File is split up into multiple objects (“stripes”)

Stored on different Object Storage Targets (OSTs)

Distribution of the stripes among the OSTs in a round-robin
fashion

Clients use standard POSIX I/O system calls

8 / 27



Motivation Background Evaluation Conclusion

Lustre: File striping

Figure: File striping1

1http://build.whamcloud.com/job/lustre-manual/

lastSuccessfulBuild/artifact/lustre_manual.xhtml
9 / 27



Motivation Background Evaluation Conclusion

HDF5

Stores data in multi-dimensional arrays

Dimensions can also be unlimited

Data can be stored contiguously in one large block in the file

Data can also be stored using chunked layout:

Data is split into multiple pieces
Written into independent locations in the file
Locations are stored in a B-tree in the header of the data
Required for advanced features like compression

10 / 27



Motivation Background Evaluation Conclusion

HDF5

Stores data in multi-dimensional arrays

Dimensions can also be unlimited

Data can be stored contiguously in one large block in the file

Data can also be stored using chunked layout:

Data is split into multiple pieces
Written into independent locations in the file
Locations are stored in a B-tree in the header of the data
Required for advanced features like compression

10 / 27



Motivation Background Evaluation Conclusion

Alignment

HDF5 provides a routine that aligns the address of the file
objects to particular boundaries

Lustre stripes are useful boundaries

OST OST OST OST OST OST

Client Client

Unaligned Aligned to Lustre stripes

11 / 27



Motivation Background Evaluation Conclusion

NetCDF-4

Like HDF5, stores data in multi-dimensional arrays

Used in the scientific community, especially in climatology,
meteorology and oceanography

NetCDF-4 directly uses HDF5; NetCDF-4 files are HDF5 files

NetCDF-4 does not provide a routine to align the file objects

12 / 27



Motivation Background Evaluation Conclusion

Agenda

1 Motivation

2 Background

3 Evaluation

4 Conclusion

13 / 27



Motivation Background Evaluation Conclusion

Experimental design

10 OSTs, each with single hard drive

10 client nodes

Interconnected via Gigabit Ethernet, maximum performance:
≈ 1, 125MiB/s

3 repetitions write / read per I/O configuration, plots show
mean

Write/read 20 GiB per node (exceeds available memory)

Accesses are aligned to the Lustre stripe boundaries, for
NetCDF-4 we are using the original and an alignment-enabled
version

14 / 27



Motivation Background Evaluation Conclusion

Disjoint pattern: Overview

Each client accesses a large contiguous region.

P0

Block 0

P1

Block 1 . . .

Pn

Block n

This is called all-to-all pattern:

OST OST . . . OST

Client Client . . . Client

15 / 27



Motivation Background Evaluation Conclusion

Interleaved pattern: Overview

Each client accesses a non-contiguous region.

P1 P2 . . . Pn

Segment 0

P1 P2 . . . Pn

Segment 1 . . .

P1 P2 . . . Pn

Segment m

1-OST pattern:

OST OST . . . OST

Client Client . . . Client

16 / 27



Motivation Background Evaluation Conclusion

400

500

600

700

800

900

write indep. write col. read indep. read col.

T
h
ro
u
gh

p
u
t
[M

iB
/s
] NC4-Aligned

NC4
HDF5

MPI-IO
POSIX

Figure: Disjoint pattern

Maximum and minimum values shown

Lower layers yield higher performance

Overhead induced by libraries reduces performance

17 / 27



Motivation Background Evaluation Conclusion

Discussion

Contention on OSTs and network resources

Results much lower than the practical maximum

High variation when using independent I/O, due to lack of
synchronisation

18 / 27



Motivation Background Evaluation Conclusion

0

200

400

600

800

1000

write indep.write col. read indep.read col.

T
h
ro
u
gh

p
u
t
[M

iB
/s
] NC4-Aligned

NC4
HDF5
MPIIO
POSIX

Figure: 1-OST pattern

Performance much more stable than with disjoint pattern

19 / 27



Motivation Background Evaluation Conclusion

Discussion

1-OST pattern with POSIX or MPI-IO almost the practical
maximum

HDF5 similar when reading

HDF5 write independent better than the disjoint pattern

NetCDF-4 API without alignment patch much worse than the
other APIs, because of unaligned access

20 / 27



Motivation Background Evaluation Conclusion

200

300

400

500

600

700

800

900

0.25 1 4 16 64 256

T
h
ro
u
gh

p
u
t
[M

iB
/s
]

Transfer Size [MiB]

HDF5 write
HDF5 read
NC4 write
NC4 read

Figure: Varying transfer size

300

400

500

600

700

800

900

0.25 1 4 16 64 256
T
h
ro
u
gh

p
u
t
[M

iB
/s
]

Chunk Size [MiB]

HDF5 write
HDF5 read
NC4 write
NC4 read

Figure: Chunked layout

HDF5 scales better with the transfer size

21 / 27



Motivation Background Evaluation Conclusion

Discussion

The highest throughput is achieved with large transfer sizes

Chunked I/O benefits from large chunk sizes

Required sizes often much larger than practically useful

22 / 27



Motivation Background Evaluation Conclusion

Agenda

1 Motivation

2 Background

3 Evaluation

4 Conclusion

23 / 27



Motivation Background Evaluation Conclusion

Best practices: HDF5

If chunking is not required, use contiguous layout with

1-OST pattern with I/O accesses aligned to the Lustre stripes

Independent I/O

If chunking is required (for example, due to compression),

Disjoint pattern

Collective I/O

Large chunk size (relative to file size)

Large transfer size (relative to stripe size and amount of
OSTs)

24 / 27



Motivation Background Evaluation Conclusion

Best practices: NetCDF-4

If chunking is not required, use contiguous layout with

Disjoint pattern

Collective I/O

Large transfer size

If chunking is required (for example, due to compression),

Disjoint pattern

Collective I/O

Large chunk size

Large transfer size

25 / 27



Motivation Background Evaluation Conclusion

Summary

Disjoint pattern: Figures significantly lower than practical
maximum performance

Interleaved pattern: 1-OST pattern achieves maximum
performance with POSIX and MPI-IO

Performance benefits from large transfer and chunk sizes

I/O performance very sensitive to correct access pattern

Manual tuning by application developers necessary

26 / 27



Motivation Background Evaluation Conclusion

NetCDF-4 enhancements

Implemented alignment for NetCDF-4: reevaluation showed
improved figures

We have opened a bug report for NetCDF-4

As far as we know, functionality still not available

HDF5 requires setting explicit alignment by the developer

Should probably be enhanced to automatically figure out
alignment based on underlying file system

27 / 27



ISC 2015 Student Cluster Competition

Visit us at booth 418 and vote for us! ¨̂
Twitter: @UHH ISC SCC

1 / 1


