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Parallel I/O performance

Scientific applications store data in various formats

HDF5 and NetCDF-4 are widely used data formats,
surrounded by high-level I/O interfaces

I/O performance can be crucial to overall performance

I/O can be performed in parallel

Suboptimal I/O performance depending on the application’s
access patterns
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Goal of analysis

Enable high performance I/O using HDF5 and NetCDF-4

Provide best practices for using I/O

Discover deficiencies and provide enhancements

Therefore, analysis of different access patterns and I/O
configurations
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Figure: Involved I/O layers and data flow
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Lustre

Stores data in a distributed manner

File is split up into multiple objects (“stripes”)

Stored on different Object Storage Targets (OSTs)

Distribution of the stripes among the OSTs in a round-robin
fashion

Clients use standard POSIX I/O system calls
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Lustre: File striping

Figure: File striping1

1http://build.whamcloud.com/job/lustre-manual/

lastSuccessfulBuild/artifact/lustre_manual.xhtml
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HDF5

Stores data in multi-dimensional arrays

Dimensions can also be unlimited

Data can be stored contiguously in one large block in the file

Data can also be stored using chunked layout:

Data is split into multiple pieces
Written into independent locations in the file
Locations are stored in a B-tree in the header of the data
Required for advanced features like compression
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Alignment

HDF5 provides a routine that aligns the address of the file
objects to particular boundaries

Lustre stripes are useful boundaries

OST OST OST OST OST OST

Client Client

Unaligned Aligned to Lustre stripes
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NetCDF-4

Like HDF5, stores data in multi-dimensional arrays

Used in the scientific community, especially in climatology,
meteorology and oceanography

NetCDF-4 directly uses HDF5; NetCDF-4 files are HDF5 files

NetCDF-4 does not provide a routine to align the file objects
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Experimental design

10 OSTs, each with single hard drive

10 client nodes

Interconnected via Gigabit Ethernet, maximum performance:
≈ 1, 125MiB/s

3 repetitions write / read per I/O configuration, plots show
mean

Write/read 20 GiB per node (exceeds available memory)

Accesses are aligned to the Lustre stripe boundaries, for
NetCDF-4 we are using the original and an alignment-enabled
version
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Disjoint pattern: Overview

Each client accesses a large contiguous region.

P0

Block 0

P1

Block 1 . . .

Pn

Block n

This is called all-to-all pattern:

OST OST . . . OST

Client Client . . . Client
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Interleaved pattern: Overview

Each client accesses a non-contiguous region.

P1 P2 . . . Pn

Segment 0

P1 P2 . . . Pn

Segment 1 . . .

P1 P2 . . . Pn

Segment m

1-OST pattern:

OST OST . . . OST

Client Client . . . Client
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Figure: Disjoint pattern

Maximum and minimum values shown

Lower layers yield higher performance

Overhead induced by libraries reduces performance
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Discussion

Contention on OSTs and network resources

Results much lower than the practical maximum

High variation when using independent I/O, due to lack of
synchronisation
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Figure: 1-OST pattern

Performance much more stable than with disjoint pattern
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Discussion

1-OST pattern with POSIX or MPI-IO almost the practical
maximum

HDF5 similar when reading

HDF5 write independent better than the disjoint pattern

NetCDF-4 API without alignment patch much worse than the
other APIs, because of unaligned access
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Figure: Varying transfer size
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Figure: Chunked layout

HDF5 scales better with the transfer size
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Discussion

The highest throughput is achieved with large transfer sizes

Chunked I/O benefits from large chunk sizes

Required sizes often much larger than practically useful
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Best practices: HDF5

If chunking is not required, use contiguous layout with

1-OST pattern with I/O accesses aligned to the Lustre stripes

Independent I/O

If chunking is required (for example, due to compression),

Disjoint pattern

Collective I/O

Large chunk size (relative to file size)

Large transfer size (relative to stripe size and amount of
OSTs)
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Best practices: NetCDF-4

If chunking is not required, use contiguous layout with

Disjoint pattern

Collective I/O

Large transfer size

If chunking is required (for example, due to compression),

Disjoint pattern

Collective I/O

Large chunk size

Large transfer size
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Summary

Disjoint pattern: Figures significantly lower than practical
maximum performance

Interleaved pattern: 1-OST pattern achieves maximum
performance with POSIX and MPI-IO

Performance benefits from large transfer and chunk sizes

I/O performance very sensitive to correct access pattern

Manual tuning by application developers necessary
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NetCDF-4 enhancements

Implemented alignment for NetCDF-4: reevaluation showed
improved figures

We have opened a bug report for NetCDF-4

As far as we know, functionality still not available

HDF5 requires setting explicit alignment by the developer

Should probably be enhanced to automatically figure out
alignment based on underlying file system
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