n and Motivation ch F S 1sion and Outlook

Dynamically Adaptable I/O Semantics for
High Performance Computing

Michael Kuhn

Scientific Computing
Department of Informatics
University of Hamburg

2015-07-14

1form
'di Universitdt Hamburg dle ZUkunﬂ

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Michael Kuhn Dynamically Adaptable I/O Semantics for High Performance Computing

Conclusion and Outloc

Introduction and Motivation
JULEA Approach
Evaluation Results

Conclusion and Outlook

Michael Kuhn ynamica able I/O Semantics for High Performance Computing

tion and Motivation S 1sion and Outloc

Introduction and Motivation

Dynamicz aptable Sem: s for High Performance Computing

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook

°)
High Performance Computing

m More complex applications often produce more data

m Parallel distributed file systems with sizes of up to 60 PB
and throughputs up to several TB/s

m One or more I/0 interfaces offer access to data

m Standardized access interfaces provide portability (POSIX)
m Proprietary interfaces might offer improved performance

Michael Kuhn ynamically Adaptable I/O Semantics for High Performance Computing

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook

00000
1/0 Semantics

m High-level I/O interfaces are provided by I/0 libraries
m Offer additional features usually not found in file systems
m Popular interfaces include MPI-IO, HDF and NetCDF

m Syntax defines operations, semantics defines behavior

m No knowledge about the applications” I/O requirements

m Optimizations are often based on heuristic assumptions
m Semantical information can provide needed knowledge

Michael Kuhn ynamically Adaptable I/O Semantics for High Performance Computing

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook

00®00
1/0 Semantics

m POSIX features very strict consistency requirements
m Changes have to be visible to other clients immediately
m I/Ois intended to be atomic
m Easy to support in local file systems but effectively prohibits
client-side caching in parallel distributed file systems

m MPI-IO’s consistency requirements are less strict

m Changes are immediately visible only to the process itself
m Requires sync-barrier-sync construct to handle concurrency
m Correctly handles non-overlapping or non-concurrent writes

Michael Kuhn ynamically Adaptable I/O Semantics for High Performance Computing 6/29

Conclusion and Outlook

pproach uation Results

Introduction and Motivation JULEA Ag
00000 00)
Dynamically Adaptable

m I/O semantics can only be changed in a limited fashion
m strictatime, relatime and noatime change the file
system’s behavior regarding the last access timestamp
m posix_fadvise allows announcing the access pattern
m MPI-IO’s atomic mode for stricter consistency semantics

m Provided facilities are often restricted

m Usually only possible at file open or mount time
®m Mount options restricted to administrators
m Often apply to the whole file

7 Adaptable I/O Semantics for High Performance Computing

Michael Kuhn

Introduction and Motivation A ac E st Conclusion and Outlook

000

Dynamically Adaptable

m JULEA features dynamically adaptable semantics
m Applications developers can specify the I/O requirements at
runtime on a per-operation basis
m File system adapts itself according to applications’” demands

Michael Kuhn ynamica able I/O Semantics for High Performance Computing

vation 5 Cong

JULEA Approach

rformance Computing

Architecture

User

Introduction and Motivation

JULEA Approach
00 9

ion Results

Kernel
Space

Parallel Application
NetCDF
HDF5
MPI-IO Parallel Application
ADIO ADIOS
Lustre (POSIX) JULEA
Idiskfs (POSIX) Object Store
Block Storage Block Storage

Figure: HPC and JULEA I/O stacks

“onclusion and Outlook

User

Space

m HPC: complex, loss of information, data transformations

m JULEA: easier to analyze, concentration into a single layer

Michael Kuhn

aptable I/O Sem:

for High Performance Computing

Introduction and Motivation ac N Conclusion and Outlook

Architecture

[Z]
—
Client
Application
___ Router _; JULEA
(mongos) (libjulea.so) Data Server

Data Daemon
(julea-daemon)

Backend
(libposix.so)
1

—————————————n

r-- Metadata Server

T T o) ||| e

(mongod) || (mongod)

Y

Figure: JULEA’s architecture

m Designed a new I/0 interface and file system prototype
m Architecture follows that of established file systems

Michael Kuhn i a antics for Hig formance Computing 11/29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook
00800000

Interface

m Semantics are dynamically adaptable according to the
applications” I/O requirements
m Developers can specify coarse-grained (“checkpoint”) or
fine-grained requirements (“strict consistency semantics”)
m File system can tune operations for specific applications
m All accesses to the file systems are performed via batches

m Each batch can consist of multiple operations
m Combine different kinds of operations within one batch

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 12/29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook
000 o) fe

Interface

batch = new Batch(POSIX_SEMANTICS);

store = julea.create("test store", batch);
collection = store.create("test collection", batch);
item = collection.create("test item", batch);
item.write(..., batch);

batch.execute();

Listing 1: Executing multiple operations in one batch

m Namespace is split into stores, collections and items
m Provide a defined point for the operations” execution
m Traditional approaches can only guess

Michael Kuhn a a for High Performance Computing 13/29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook

00000000

Semantics

m All important aspects of the semantics can be changed
m Performance-related: atomicity, concurrency, consistency,
ordering, persistency and safety
m Further ideas: redundancy, security, transformation

m Templates for easy use and established semantics
m Default: Concurrent non-overlapping operations
m POSIX: Provided for backwards compatibility
m Temporary (local): Allow transparent use of advanced
technologies such as burst buffers

Michael Kuhn a a for High Performance Computing 14 /29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook
) 00000000 5 0

Semantics

Atomicity

m Whether accesses should be executed atomically

m Large operations usually involve several servers
m Atomicity requires locking

m Levels of atomicity
m None: Accesses are not executed atomically
m Operation: Single operations are executed atomically
m Batch: Complete batches are executed atomically

m Avoid unnecessary locking overhead

m Many POSIX-compliant file systems perform unnecessary
atomic write operations for shared access

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 15/29

Introduction and Motivation JULEA Approach tion Results Conclusion and Outlook

00000000

Semantics

Safety

m Specify how safely data and metadata should be handled
m Provides guarantees about the state of the data and
metadata after execution
m Levels of safety
m None: No safety guarantees are made
m Network: It is guaranteed that changes have been
transferred to the servers as soon as the batch finishes
m Storage: It is guaranteed that changes have been stored on
the storage devices as soon as the batch finishes
m Allows adjusting the overhead of data safety measures

m Eliminate one of two network messages by not requesting
the server’s acknowledgment for unimportant data

Michael Kuhn daptable I/O Semantics for High Performance Computing 16 /29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook

00000000

Semantics

m Concurrency: Specify whether concurrent accesses will take
place and how the access pattern will look like

m Consistency: Specify if and when clients will see
modifications performed by other clients

m Ordering: Specify whether operations within a batch are
allowed to be reordered

m Persistency: Specify if and when data and metadata must be
written to persistent storage

Michael Kuhn a a for High Performance Computing 17/29

vation h y S Cong

Evaluation Results

able I/O Sem:

Introduction and Motivation JULEA Approach Evaluation Results Conclusion and Outlook

Overview

m Evaluate potential of dynamically adaptable semantics

m Using synthetic benchmarks and real applications
m Large number of concurrently accessing clients

m Clients first write data and then read it back again
m Write and read phases are completely separated
m Individual and shared files, non-overlapping accesses

m Represents a very simple and common I/O pattern

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 19/29

E

Data Performance

4KiB 4~ 16 KiB 64 KiB 1344 256 KiB 1,024 KiB 4KiB 4~ 16 KiB 64 KiB 3¢+ 256 KiB +=}1,024 KiB
= 1000 | - 1,000 |
) =
S 800 | e S 800 -
= €00 ..y = 2
r = 2 600 B E
2 o A
< = = 1 =
4 £ W H—H—K
400 | -
g g r 2 el
£ 200 £ 200} ~
Oz'z'z'"9'3"\9")'&37'z iy ==
7% % % %0 %% e T, % % % % %% %, % % 20 B 5,
Configuration (Nodes/Processes) Configuration (Nodes/Processes)
(a) Lustre: individual files, POSIX (b) JULEA: individual items
4KiB 44 16KiB 64 KiB (3¢ 256 KiB {11,024 KiB 4KiB 4= 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB
1,200 1,200
- 1,000 | — 1,000 |
=)
S 800 | S 800
5 eo0 2 g)
L = S 600 z
£ = £ E
E g 40t P
g g
£ 200l £ 200
- = T,
T e = e AN
%% %% %% 8 B %% % % %% %% % %% %
Configuration (Nodes/Processes) Configuration (Nodes/Processes)
(c) Lustre: shared file, POSIX (d) JULEA: shared item

20/29

Data Performance

4KiB 4 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB
7 1000 |
= .
S 800 | o
=]
3 600 L 4
-?; ///P/‘Aé
] 400 A
2 ‘ﬁ\ //+
£ 200 % s

0 I .) L

555 % 2%, % %%, 7%, % 2,2,

%%,
Configuration (Nodes/Processes)

(e) Lustre: individual files, POSIX

4KiB 4 16KiB 64 KiB 131 256 KiB 131,024 KiB

1,200

7 Looo |

22}

S 80|

2 60| 3

2 //\EE—EH;

Z 400 L

g X

=

s
oL 4 T b:}uué\uu)uu‘ou
Ly b Loy Loy £ Z 3 <, %
Oﬁ?@/@/ey@@/@g@@/@%o

Configuration (Nodes/Processes)

(g) Lustre: shared file, POSIX

Throughput [MiB/s]

Throughput [MiB/s]

E

4KiB 4 16KiB

64 KiB 3¢+ 256 KiB +=}1,024 KiB

1,000 -
800 |-
600 [
400 L
200 | w
—_— = -
0e=t— L L L L s L J
%% % % % %% /g,"’/gp%}’o/&o
Configuration (Nodes/Processes)
(f) JULEA: individual items
4KiB 4 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB
1,200
1,000 -
-_g
800 | B
600 |- %
&
400 L
200 |-
o = T 2 et el
7% % % % %%%% %% %Y,

Configuration (Nodes/Processes)

(h) JULEA: shared item

21/29

4KiB 4 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB

7 1000

R

2 e0f A £

R - *

E b &

£ 200} W
=== L L L

- 1 1 1
ES
%%%%%%%%%%@%%&
0

Configuration (Nodes/Processes)

(i) Lustre: ind. files, MPI-IO (atomic)

4KiB 4 16KiB 64 KiB 131 256 KiB 131,024 KiB

1,200
— 1,000 |
2
S s}
= - 2
2. 600 | ﬁ/m'/@ialg‘a«,g
5w =
g r A
E 20|
‘7—/
0 I R T W T R T O
7% % % %%%%% %% %Y,

Configuration (Nodes/Processes)

(k) JULEA: individual items (batch)

able I/O Sem:

Evaluatio 5
[o]e] le}

Data Performance

4KiB 4 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB

- 1,000 |
=
S 800 |
ER) £
L £
£ z
2 400 L
£
=200
= =

== +—+ +

< s Lo L A R N,
%% % % %% %% 0 % 0 Y,
Configuration (Nodes/Processes)

(j) JULEA: individual items (atomic)

4KiB 4 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB

1,200
- 1,000 |
=
S 800 |
ER £
- £
% W—Bg
2 40l M
g
£ 20| =
- ~
0 R S S -]
7% % % % %%%% %% %Y,

Configuration (Nodes/Processes)

(I) JULEA: individual items (unsafe)

Evaluatio 5
[o]ele]]

Data Performance

4KiB 4~ 16 KiB 64 KiB 1344 256 KiB 1,024 KiB 4KiB 4~ 16 KiB 64 KiB 3¢+ 256 KiB +=}1,024 KiB

%

1,000 |

800

Throughput [MiB/s]
Throughput [MiB/s]
T

200 +

L o=+ |, |
%

%

L |
2y L S Ga = 2 4
AR AN A AN
® <Y
Configuration (Nodes/Processes) Configuration (Nodes/Processes)

% % % % 4% T % % % %%, % % %0 % By

L%

(m) Lustre: ind. files, MPI-IO (atomic) (n) JULEA: individual items (atomic)

4KiB 44 16KiB 64 KiB 3¢ 256 KiB 131,024 KiB 4KiB 4 16KiB 64 KiB 131 256 KiB 131,024 KiB
1,200 1,200
7 1,000 |- % z 1,000 |
E _— S 800 |
R ! T F ewl %
,_Ec R ~ ..& ~
2 400 L 2 400 L y
2 g Z,
£ 200} 3 £ 200l
= —_— e —— /’K
ol it))) k== . . N

2 5 = 9 < > = 9
7% % % %%%%% %% %Y, 7% % % % %%%% %% %Y,

Configuration (Nodes/Processes) Configuration (Nodes/Processes)

(0) JULEA: individual items (batch) (p) JULEA: individual items (unsafe)

able I/O Sem:

Evaluation Results

partdiff

JULEA POSIX MPLIO 3¢ MPIIO (coll) 1
700
— 600
= 500
g %88 M
= ra
£ 200 T o
& 100
0 1 1 I 1 1 1 1 1 |
1 2 3 4 5 6 7 8 9 10
Configuration (Nodes)
JULEA POSIX MPI-IO 34 MPI-IO (coll.) H=H

Runtime [s]

Configuration (Nodes)

Figure: partdiff checkpointing using one and six processes per node

Michael Kuhn \ 7 Adaptable I/O Semantics for High Performance Computing

24 /29

Introduction and Motivation JULEA Approach Evaluation Results Conclusion and Outlook

Conclusion

m Lustre suffers from problems due to POSIX

m Performance is abysmal for shared files
m Even with simple access patterns and few clients

m JULEA’s performance is limited by underlying file system

m Batches improve throughput for small block sizes
m Safety semantics reduce network overhead
m Atomic operations can be employed only when necessary

m Metadata results are also promising

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 25/29

tion and Motivation S 1sion and Outlo

Conclusion and Outlook

le I/O Seme i rme @i i 26/29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook
) 00 0 000

Conclusion

m POSIX is portable but inflexible

m No way to relax semantics
m Effectively forces POSIX semantics upon other layers

m Static approaches are only suitable for a subset of use cases
m Other file systems are also limited to their semantics
m JULEA offers solutions for the prevailing problems

m Supports dynamically adaptable I/O semantics
m Adapt according to the application requirements

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 27/29

Conclusion and Outlook
(o] Jo}

Conclusion

m Detached activities to improve I/O interfaces
m Focused on high-level I/O libraries

m JULEA presents a first uniform approach

m Allows semantical information to be used across the
complete I/O stack

Michael Kuhn i a antics for Hig formance Computing 28/29

Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook
5 00 5 0 00®

Outlook

m ADIOS’s design is close to JULEA
m Increase application coverage using a JULEA backend
m Provide dynamically adaptable semantics for established
I/0 interfaces and parallel distributed file systems

m Interfaces have to be standardized and supported
m Agree on semantics suited for modern HPC applications
m Common set of configurable parameters

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 29/29

ISC 2015 Student Cluster Competition

University of Hamburg,

Germany

Visit us at booth 418 and vote for us! <>
Twitter: @UHH_ISC_SCC

Michael Kuhn Dynamically Adaptable I/O Semantics for High Performance Computing

	Introduction and Motivation
	JULEA Approach
	Evaluation Results
	Conclusion and Outlook

