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High Performance Computing

m More complex applications often produce more data

m Parallel distributed file systems with sizes of up to 60 PB
and throughputs up to several TB/s

m One or more I/0 interfaces offer access to data

m Standardized access interfaces provide portability (POSIX)
m Proprietary interfaces might offer improved performance
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1/0 Semantics

m High-level I/O interfaces are provided by I/0 libraries
m Offer additional features usually not found in file systems
m Popular interfaces include MPI-IO, HDF and NetCDF

m Syntax defines operations, semantics defines behavior

m No knowledge about the applications” I/O requirements

m Optimizations are often based on heuristic assumptions
m Semantical information can provide needed knowledge
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1/0 Semantics

m POSIX features very strict consistency requirements
m Changes have to be visible to other clients immediately
m I/Ois intended to be atomic
m Easy to support in local file systems but effectively prohibits
client-side caching in parallel distributed file systems

m MPI-IO’s consistency requirements are less strict

m Changes are immediately visible only to the process itself
m Requires sync-barrier-sync construct to handle concurrency
m Correctly handles non-overlapping or non-concurrent writes

Michael Kuhn ynamically Adaptable I/O Semantics for High Performance Computing 6/29
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Dynamically Adaptable

m I/O semantics can only be changed in a limited fashion
m strictatime, relatime and noatime change the file
system’s behavior regarding the last access timestamp
m posix_fadvise allows announcing the access pattern
m MPI-IO’s atomic mode for stricter consistency semantics

m Provided facilities are often restricted

m Usually only possible at file open or mount time
®m Mount options restricted to administrators
m Often apply to the whole file

7 Adaptable I/O Semantics for High Performance Computing
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Dynamically Adaptable

m JULEA features dynamically adaptable semantics
m Applications developers can specify the I/O requirements at
runtime on a per-operation basis
m File system adapts itself according to applications’” demands
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Figure: HPC and JULEA I/O stacks
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User

Space

m HPC: complex, loss of information, data transformations

m JULEA: easier to analyze, concentration into a single layer
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Architecture
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Figure: JULEA’s architecture

m Designed a new I/0 interface and file system prototype
m Architecture follows that of established file systems
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Interface

m Semantics are dynamically adaptable according to the
applications” I/O requirements
m Developers can specify coarse-grained (“checkpoint”) or
fine-grained requirements (“strict consistency semantics”)
m File system can tune operations for specific applications
m All accesses to the file systems are performed via batches

m Each batch can consist of multiple operations
m Combine different kinds of operations within one batch

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 12/29
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Interface

batch = new Batch(POSIX_SEMANTICS);

store = julea.create("test store", batch);
collection = store.create("test collection", batch);
item = collection.create("test item", batch);
item.write(..., batch);

batch.execute();

Listing 1: Executing multiple operations in one batch

m Namespace is split into stores, collections and items
m Provide a defined point for the operations” execution
m Traditional approaches can only guess

Michael Kuhn a a for High Performance Computing 13/29
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Semantics

m All important aspects of the semantics can be changed
m Performance-related: atomicity, concurrency, consistency,
ordering, persistency and safety
m Further ideas: redundancy, security, transformation

m Templates for easy use and established semantics
m Default: Concurrent non-overlapping operations
m POSIX: Provided for backwards compatibility
m Temporary (local): Allow transparent use of advanced
technologies such as burst buffers

Michael Kuhn a a for High Performance Computing 14 /29
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Semantics

Atomicity

m Whether accesses should be executed atomically

m Large operations usually involve several servers
m Atomicity requires locking

m Levels of atomicity
m None: Accesses are not executed atomically
m Operation: Single operations are executed atomically
m Batch: Complete batches are executed atomically

m Avoid unnecessary locking overhead

m Many POSIX-compliant file systems perform unnecessary
atomic write operations for shared access

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 15/29
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Semantics

Safety

m Specify how safely data and metadata should be handled
m Provides guarantees about the state of the data and
metadata after execution
m Levels of safety
m None: No safety guarantees are made
m Network: It is guaranteed that changes have been
transferred to the servers as soon as the batch finishes
m Storage: It is guaranteed that changes have been stored on
the storage devices as soon as the batch finishes
m Allows adjusting the overhead of data safety measures

m Eliminate one of two network messages by not requesting
the server’s acknowledgment for unimportant data

Michael Kuhn daptable I/O Semantics for High Performance Computing 16 /29
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Semantics

m Concurrency: Specify whether concurrent accesses will take
place and how the access pattern will look like

m Consistency: Specify if and when clients will see
modifications performed by other clients

m Ordering: Specify whether operations within a batch are
allowed to be reordered

m Persistency: Specify if and when data and metadata must be
written to persistent storage

Michael Kuhn a a for High Performance Computing 17/29
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Overview

m Evaluate potential of dynamically adaptable semantics

m Using synthetic benchmarks and real applications
m Large number of concurrently accessing clients

m Clients first write data and then read it back again
m Write and read phases are completely separated
m Individual and shared files, non-overlapping accesses

m Represents a very simple and common I/O pattern

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 19/29
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Conclusion

m Lustre suffers from problems due to POSIX

m Performance is abysmal for shared files
m Even with simple access patterns and few clients

m JULEA’s performance is limited by underlying file system

m Batches improve throughput for small block sizes
m Safety semantics reduce network overhead
m Atomic operations can be employed only when necessary

m Metadata results are also promising

Michael Kuhn 3 i Adaptable I/O Semantics for High Performance Computing 25/29



tion and Motivation S 1sion and Outlo

Conclusion and Outlook

le I/O Seme i rme @i i 26/29



Introduction and Motivation JULEA Approach uation Results Conclusion and Outlook
) 00 0 000

Conclusion

m POSIX is portable but inflexible

m No way to relax semantics
m Effectively forces POSIX semantics upon other layers

m Static approaches are only suitable for a subset of use cases
m Other file systems are also limited to their semantics
m JULEA offers solutions for the prevailing problems

m Supports dynamically adaptable I/O semantics
m Adapt according to the application requirements
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Conclusion

m Detached activities to improve I/O interfaces
m Focused on high-level I/O libraries

m JULEA presents a first uniform approach

m Allows semantical information to be used across the
complete I/O stack
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Outlook

m ADIOS’s design is close to JULEA
m Increase application coverage using a JULEA backend
m Provide dynamically adaptable semantics for established
I/0 interfaces and parallel distributed file systems

m Interfaces have to be standardized and supported
m Agree on semantics suited for modern HPC applications
m Common set of configurable parameters
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