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High Performance Computing

More complex applications often produce more data

Parallel distributed file systems with sizes of up to 60 PB
and throughputs up to several TB/s
One or more I/O interfaces offer access to data

Standardized access interfaces provide portability (POSIX)
Proprietary interfaces might offer improved performance
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I/O Semantics

High-level I/O interfaces are provided by I/O libraries
Offer additional features usually not found in file systems
Popular interfaces include MPI-IO, HDF and NetCDF

Syntax defines operations, semantics defines behavior
No knowledge about the applications’ I/O requirements

Optimizations are often based on heuristic assumptions
Semantical information can provide needed knowledge
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I/O Semantics

POSIX features very strict consistency requirements
Changes have to be visible to other clients immediately
I/O is intended to be atomic
Easy to support in local file systems but effectively prohibits
client-side caching in parallel distributed file systems

MPI-IO’s consistency requirements are less strict
Changes are immediately visible only to the process itself
Requires sync-barrier-sync construct to handle concurrency
Correctly handles non-overlapping or non-concurrent writes
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Dynamically Adaptable

I/O semantics can only be changed in a limited fashion
strictatime, relatime and noatime change the file
system’s behavior regarding the last access timestamp
posix_fadvise allows announcing the access pattern
MPI-IO’s atomic mode for stricter consistency semantics

Provided facilities are often restricted
Usually only possible at file open or mount time
Mount options restricted to administrators
Often apply to the whole file
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Dynamically Adaptable

JULEA features dynamically adaptable semantics
Applications developers can specify the I/O requirements at
runtime on a per-operation basis
File system adapts itself according to applications’ demands
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Architecture
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Figure: HPC and JULEA I/O stacks

HPC: complex, loss of information, data transformations
JULEA: easier to analyze, concentration into a single layer
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Architecture
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Figure: JULEA’s architecture

Designed a new I/O interface and file system prototype
Architecture follows that of established file systems
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Interface

Semantics are dynamically adaptable according to the
applications’ I/O requirements

Developers can specify coarse-grained (“checkpoint”) or
fine-grained requirements (“strict consistency semantics”)
File system can tune operations for specific applications

All accesses to the file systems are performed via batches
Each batch can consist of multiple operations
Combine different kinds of operations within one batch
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Interface

batch = new Batch(POSIX_SEMANTICS);

store = julea.create("test store", batch);
collection = store.create("test collection", batch);
item = collection.create("test item", batch);
item.write(..., batch);

batch.execute();

Listing 1: Executing multiple operations in one batch

Namespace is split into stores, collections and items
Provide a defined point for the operations’ execution

Traditional approaches can only guess
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Semantics

All important aspects of the semantics can be changed
Performance-related: atomicity, concurrency, consistency,
ordering, persistency and safety
Further ideas: redundancy, security, transformation

Templates for easy use and established semantics
Default: Concurrent non-overlapping operations
POSIX: Provided for backwards compatibility
Temporary (local): Allow transparent use of advanced
technologies such as burst buffers
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Semantics

Atomicity

Whether accesses should be executed atomically
Large operations usually involve several servers
Atomicity requires locking

Levels of atomicity
None: Accesses are not executed atomically
Operation: Single operations are executed atomically
Batch: Complete batches are executed atomically

Avoid unnecessary locking overhead
Many POSIX-compliant file systems perform unnecessary
atomic write operations for shared access
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Semantics

Safety

Specify how safely data and metadata should be handled
Provides guarantees about the state of the data and
metadata after execution

Levels of safety
None: No safety guarantees are made
Network: It is guaranteed that changes have been
transferred to the servers as soon as the batch finishes
Storage: It is guaranteed that changes have been stored on
the storage devices as soon as the batch finishes

Allows adjusting the overhead of data safety measures
Eliminate one of two network messages by not requesting
the server’s acknowledgment for unimportant data
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Semantics

Concurrency: Specify whether concurrent accesses will take
place and how the access pattern will look like

Consistency: Specify if and when clients will see
modifications performed by other clients

Ordering: Specify whether operations within a batch are
allowed to be reordered

Persistency: Specify if and when data and metadata must be
written to persistent storage
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Overview

Evaluate potential of dynamically adaptable semantics
Using synthetic benchmarks and real applications
Large number of concurrently accessing clients

Clients first write data and then read it back again
Write and read phases are completely separated
Individual and shared files, non-overlapping accesses

Represents a very simple and common I/O pattern
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(a) Lustre: individual files, POSIX
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(b) JULEA: individual items
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(c) Lustre: shared file, POSIX
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(d) JULEA: shared item
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(e) Lustre: individual files, POSIX
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(f) JULEA: individual items
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(g) Lustre: shared file, POSIX
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(h) JULEA: shared item
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(i) Lustre: ind. files, MPI-IO (atomic)
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(j) JULEA: individual items (atomic)
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(k) JULEA: individual items (batch)
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(l) JULEA: individual items (unsafe)
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(m) Lustre: ind. files, MPI-IO (atomic)
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(n) JULEA: individual items (atomic)
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(o) JULEA: individual items (batch)
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(p) JULEA: individual items (unsafe)
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Figure: partdiff checkpointing using one and six processes per node
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Conclusion

Lustre suffers from problems due to POSIX
Performance is abysmal for shared files
Even with simple access patterns and few clients

JULEA’s performance is limited by underlying file system
Batches improve throughput for small block sizes
Safety semantics reduce network overhead
Atomic operations can be employed only when necessary

Metadata results are also promising
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Conclusion

POSIX is portable but inflexible
No way to relax semantics
Effectively forces POSIX semantics upon other layers

Static approaches are only suitable for a subset of use cases
Other file systems are also limited to their semantics

JULEA offers solutions for the prevailing problems
Supports dynamically adaptable I/O semantics
Adapt according to the application requirements
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Conclusion

Detached activities to improve I/O interfaces
Focused on high-level I/O libraries

JULEA presents a first uniform approach
Allows semantical information to be used across the
complete I/O stack
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Outlook

ADIOS’s design is close to JULEA
Increase application coverage using a JULEA backend

Provide dynamically adaptable semantics for established
I/O interfaces and parallel distributed file systems

Interfaces have to be standardized and supported
Agree on semantics suited for modern HPC applications
Common set of configurable parameters
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