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About Us: Scientific Computing

Analysis of parallel I/O

I/O & energy tracing tools

Middleware optimization

Alternative I/O interfaces

Data reduction techniques

Cost & energy efficiency
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HPC I/O Stack
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Figure: HPC I/O stack

Complex interactions
Optimizations on each layer

Applications use structured data
Matrices, vectors etc.
Often in the form of time series

A POSIX file is a byte stream
All high-level information is lost
Data types, required semantics
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Syntax and Semantics

Even high-level interfaces have no knowledge about the
applications’ I/O requirements

Optimizations are often based on heuristics

Semantical information can provide needed knowledge
Interfaces comprise two parts

Syntax defines available operations
Semantics defines operations’ behavior
Both are typically static
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I/O Semantics

POSIX features very strict consistency requirements
Changes have to be visible to other clients immediately
I/O is intended to be atomic
Effectively prohibits client-side caching

MPI-IO’s consistency requirements are less strict
Changes are immediately visible only to the process itself
Correctly handles non-overlapping or non-concurrent writes

File systems force POSIX semantics upon higher layers
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I/O Semantics. . .

I/O semantics can only be changed in a limited fashion
strictatime, relatime and noatime change the file
system’s behavior regarding the last access timestamp
posix_fadvise allows announcing the access pattern
MPI-IO’s atomic mode for stricter consistency semantics

Provided facilities are often restricted
Usually only possible at file open or mount time
Often apply to the whole file
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Feature Wishlist

Allow developers to specify application requirements
Offer fine-grained control
Leverage semantical information across the whole stack

Adapt file system to the applications’ requirements
Perform optimizations that are applicable to the semantics

High level of abstraction
Less focus on technical aspects
Closer to application semantics
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New I/O Stack
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Figure: HPC and JULEA I/O stacks

Easier to analyze, concentration into a single layer
Pass semantical information into the file system
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Features

Semantics are dynamically adaptable according to the
applications’ I/O requirements

Developers can specify coarse-grained (“checkpoint”) or
fine-grained requirements (“strict consistency semantics”)
File system can tune operations for specific applications

All accesses to the file systems are performed via batches
Each batch can consist of multiple operations
Combine different kinds of operations within one batch
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Interface

batch = new Batch(POSIX_SEMANTICS);

store = julea.create("test store", batch);
collection = store.create("test collection", batch);
item = collection.create("test item", batch);
item.write(..., batch);

batch.execute();

Listing 1: Executing multiple operations in one batch

Namespace is split into stores, collections and items
Provide a defined point for the operations’ execution

Traditional approaches can only guess
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Semantics

Many important aspects of the semantics can be changed
Performance-related: atomicity, concurrency, consistency,
ordering, persistency and safety
Further ideas: redundancy, security, transformation

Templates for easy use and established semantics
Default: Concurrent non-overlapping operations
POSIX: Provided for backwards compatibility
Temporary (local): Allow transparent use of advanced
technologies such as node-local buffers
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Semantics. . .

Atomicity: Whether accesses should be executed atomically
Avoid locking for multi-server operations

Concurrency: Whether concurrent accesses will take place
and how the access pattern will look like

Efficiently handle different patterns without heuristics

Consistency: When clients will see modifications of others
Enable/disable client-side read caching
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Semantics. . .

Ordering: Whether batch operations can be reordered
Group operations for more efficient access

Persistency: When modifications will be visible globally
Enable/disable client-side write caching

Safety: When data/metadata will be durable
Guarantee state of data/metadata after execution
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Lustre vs. JULEA
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Figure: Checkpointing into a shared file (one process per node)
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Lustre vs. JULEA. . .
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Figure: Checkpointing into a shared file (six processes per node)
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(a) JULEA: individual items
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(b) JULEA: individual items (batch)
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(c) JULEA: individual items (atomic)
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(d) JULEA: individual items (unsafe)
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Application Compatibility

Combine with ADIOS
Abstract description of applications’ I/O using XML

Already offers some helpful information
adios_start_calculation
adios_stop_calculation
adios_end_iteration
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Application Compatibility. . .

Extend with further semantical information
Required I/O semantics
Compressibility etc.

<adios-config host-language="C">
...
<semantics group="checkpoint" concurrency="non-overlapping"/>
<semantics group="buffer" template="temporary-local"/>

</adios-config>

Listing 2: ADIOS extensions
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Gap Between Computation and Storage
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Figure: Development of CPU speed, HDD capacity and HDD speed

I/O is becoming an increasingly important problem
Data can be produced faster but it becomes harder to store it

Consequence: Spend more money on storage
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Example: DKRZ

2009 2015 Factor
Performance 150 TF/s 3 PF/s 20x
Nodes 264 2,500 9.5x
Node performance 0.6 TF/s 1.2 TF/s 2x
System memory 20 TB 170 TB 8.5x
Storage capacity 5.6 PB 45 PB 8x
Storage throughput 30 GB/s 400 GB/s 13.3x
Disk drives 7,200 8,500 1.2x
Archive capacity 53 PB 335 PB 6.3x
Archive throughput 9.6 GB/s 21 GB/s 2.2x
Power consumption 1.6 MW 1.4 MW 0.9x
Investment 30 Me 30 Me 1x
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Data Reduction

Several approaches for data reduction
Compression, deduplication and recomputation

Deduplication needs too much main memory
More than the current supercomputer is equipped with

Recomputation might become viable in the future
Cost for computation and storage currently in balance
Preservation is problematic
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Data Reduction. . .

Compression is promising
33 % savings with negligible overhead

Currently only static approaches for compression
One compression algorithm per file system

Use semantical information to improve compression
Working on adaptive compression
More efficient application-specific compression

Michael Kuhn I/O Semantics for Future Storage Systems 23 / 25



Introduction and Motivation Dynamically Adaptable I/O Semantics Data Reduction Techniques Conclusion and Outlook

Conclusion

POSIX is portable but inflexible
No way to relax semantics

Static approaches are only suitable for a subset of use cases
Other file systems are also limited to their semantics

New approach offers solutions
Adapt semantics according to the application requirements
Use semantical information across the complete I/O stack
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Outlook

Dynamically adaptable semantics for established interfaces
Semantics suited for modern HPC applications
Common set of configurable parameters

Extend ADIOS to support more semantical information
Adapt I/O semantics according to application requirements
Exploit information for advanced data reduction
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