
BoF: Autonomic I/O Optimization

Julian Kunkel1 Michaela Zimmer1

Alvaro Aguilera2 Holger Mickler2

1 University of Hamburg

2 ZIH Dresden

June 23th � 2014, ISC



Outline

1 Introduction

2 SIOX: An Architecture for Autonomous I/O Optimization

3 Instrumentation

4 Live Demonstrations

5 Simplifying I/O Research

6 Discussion

Julian M. Kunkel Autonomic I/O Optimization with SIOX 2 / 21



Introduction

Autonomic I/O Optimization?

There are many options to tune the I/O-stack, e.g.

MPI hints, HDF5 properties, open �ags, cache size, posix_fadvise()
Command line tools: lfs setstripe

Setup/initialization of a storage system
Environment variables

Many options are of technical nature

Performance gain/loss depend on hardware, software
Speci�c to �le system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Performance-portability is unpredictable

Julian M. Kunkel Autonomic I/O Optimization with SIOX 3 / 21



Introduction

Goals of this BoF

Discussion of

(Semi-)Automatic detection and healing of performance issues!

Julian M. Kunkel Autonomic I/O Optimization with SIOX 4 / 21



Introduction

Towards Autonomic Optimization with SIOX

MPI

MPI-IO

Application

I/O-lib.

GPFS

C
lie

n
t

...ServerServer ServerServer

Activity & state

Activity & state

Activity & state

Activity & state

I/O-strategy

SAN

S
IO
X

Activity

SIOX will

collect and analyse

activity patterns and
performance metrics

in order to

assess system performance

locate and diagnose problem

learn & apply optimizations

intelligently steer monitoring

Julian M. Kunkel Autonomic I/O Optimization with SIOX 5 / 21



Introduction

Partners and Funding

Funded by the BMBF
Grant No.: 01 IH 11008 B

Start: Juli 1st, 2011

End: September 30, 2013

Julian M. Kunkel Autonomic I/O Optimization with SIOX 6 / 21



SIOX: An Architecture for Autonomous I/O Optimization

Outline

1 Introduction

2 SIOX: An Architecture for Autonomous I/O Optimization
Modularity
High-Level Design: Faces of SIOX
Example Con�gurations
Overhead

3 Instrumentation

4 Live Demonstrations

5 Simplifying I/O Research

6 DiscussionJulian M. Kunkel Autonomic I/O Optimization with SIOX 7 / 21



SIOX: An Architecture for Autonomous I/O Optimization Modularity

Modularity

The SIOX architecture is �exible and developed in C++ components

License: LGPL, vendor friendly

Upon start-up of (instrumented) applications, modules are loaded

Con�guration �le de�nes modules and options

Choose advantageous plug-ins
Regulate overhead

For debugging, modules may create reports

May gather statistics of (application) behavior / activity
Provide (internal) usage or overhead statistics
These reports can be output at �application� termination

Julian M. Kunkel Autonomic I/O Optimization with SIOX 8 / 21



SIOX: An Architecture for Autonomous I/O Optimization High-Level Design: Faces of SIOX

Faces of SIOX (1): General System Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

Compute node / file system server

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

patterns,
optimizations
and system-
information

updates of
systeminfo,
plugindata

Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.

Julian M. Kunkel Autonomic I/O Optimization with SIOX 9 / 21



SIOX: An Architecture for Autonomous I/O Optimization High-Level Design: Faces of SIOX

Faces of SIOX (2): Con�guration for Online Mode

No pattern recording, optimization without machine learning

2) SIOX
Daemon

correlates component-wide
and compresses

5) SIOX
Knowledge Base

holds analyses
and optimizations

patterns,
optimizations
and system-
information

Compute node

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

updates of
systeminfo
and plugindata

Julian M. Kunkel Autonomic I/O Optimization with SIOX 10 / 21



SIOX: An Architecture for Autonomous I/O Optimization High-Level Design: Faces of SIOX

Faces of SIOX (3): Con�guration for Static Knowledge

Apply static best-practices with low overhead.

Compute node

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations

A con�guration with a node-global daemon is also possible

Julian M. Kunkel Autonomic I/O Optimization with SIOX 11 / 21



SIOX: An Architecture for Autonomous I/O Optimization Example Con�gurations

Module Interactions of an Example Con�guration

Julian M. Kunkel Autonomic I/O Optimization with SIOX 12 / 21



SIOX: An Architecture for Autonomous I/O Optimization Example Con�gurations

Intelligent Monitoring � Controlled by Energy Consumption

Julian M. Kunkel Autonomic I/O Optimization with SIOX 13 / 21



SIOX: An Architecture for Autonomous I/O Optimization Example Con�gurations

Features of the Working Prototype

Monitoring
Application (activity) behavior
Ontology and system information
Data can be stored in �les or Postgres database
Trace reader

Daemon
Applications forward activities to the daemon
Node statistics are captured
Energy consumption (RAPL) can be captured

Activity plug-ins
GenericHistory plug-in tracks performance, proposes MPI hints
Fadvise (ReadAhead) injector
FileSurveyor prototype � Darshan-like

Reasoner component (with simple decision engine)
Intelligent monitoring: trigger monitoring on abnormal behavior

Reporting of statistics on console or �le (independent and MPI-aware)

Julian M. Kunkel Autonomic I/O Optimization with SIOX 14 / 21



SIOX: An Architecture for Autonomous I/O Optimization Overhead

System Con�guration

Test system

10 compute nodes

10 I/O nodes with Lustre

Compute Nodes

Dual-socket Intel Xeon X5650@2.67 GHz

Ubuntu 12.04

Applications are compiled with: GCC 4.7.2, OpenMPI 1.6.5

I/O Nodes

Intel Xeon E3-1275@3.4 GHz, 16 GByte RAM

Seagate Barracuda 7200.12 (ca. 100 MiB/s)

CentOS 6.5, Lustre 2.5

Julian M. Kunkel Autonomic I/O Optimization with SIOX 15 / 21



SIOX: An Architecture for Autonomous I/O Optimization Overhead

MPI 4-levels-of-Access

Each process accesses 10240 blocks of 100KiB

Several hint sets are evaluated

write ind-ctg read ind-ctg write coll-ctg read coll-ctg write ind-nc read ind-nc write coll-nc read coll-nc
0

100

200

300

400

500

600

700

No hints Hints Hints, MPI instr. using ld –wrap Hints, POSIX & MPI instr. with LD_PRELOAD

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

Performance comparison of the 4-levels-of-access on our Lustre �le system. The hints
increase the collective bu�er size to 200MB and disable data sieving.

Julian M. Kunkel Autonomic I/O Optimization with SIOX 16 / 21



Summary

Summary

SIOX aims to capture and optimize I/O

on all layers and �le systems

We are building a modular and open system

Intelligent monitoring: Reasoner triggers based on abnormality

We can change behavior without modifying code!

Design the optimization once, apply on many applications

Remark: We are contributing components to Exascale10

Julian M. Kunkel Autonomic I/O Optimization with SIOX 17 / 21



Instrumentation Low-Level API

Low-Level API � Overview and Instrumentation

C-Interface for monitoring / analysis

Monitor activities and system statistics
Query suitable optimization

Relies on modules to

store activities
store and query (ontology and system) information

Instrumentation uses low-level-API
A tool and work�ow is provided; already instrumented:

POSIX (stdio and low-level)
MPIIO
NetCDF (initial)
HDF5 (initial)

Julian M. Kunkel Autonomic I/O Optimization with SIOX 18 / 21



Instrumentation Instrumentation

Instrumentation

Work�ow

Annotation of header �le

Tool siox-wrapper-generator creates libraries

Run-time instrumentation with LD_PRELOAD
Compile-time instrumentation using ld �wrap

siox-inst tool simpli�es instrumentation

Header annotations for MPI_File_write_at()
//@activity

//@activity_link_size fh

//@activity_attribute filePosition offset

//@splice_before ''int intSize; MPI_Type_size(datatype, &intSize);

uint64_t size=(uint64_t)intSize*(uint64_t)count;''

//@activity_attribute bytesToWrite size

//@error ''ret!=MPI_SUCCESS'' ret

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void * buf, int count,

MPI_Datatype datatype, MPI_Status * status);

Julian M. Kunkel Autonomic I/O Optimization with SIOX 19 / 21



Simplifying I/O Research Injection of �I/O-Hints�

Optimization Plug-in: Read-Ahead with Fadvise

Plug-in injects posix_fadvise() for strided access

vs. no prefetching vs. in code embedded execution

Compute �Benchmark� reads data, then sleeps

100µs and 10ms for 20KiB and 1000KiB stride, respectively

Results

Experiment 20KiB stride 1000KiB stride

Regular execution 97.1µs 7855.7µs

Embedded fadvise 38.7µs 45.1µs

SIOX fadvise read-ahead 52.1µs 95.4µs

Time needed to read one 1KiB data block in a strided access pattern.

Julian M. Kunkel Autonomic I/O Optimization with SIOX 20 / 21



Discussion

Discussion

Other Activities at ISC

Research Poster 12: SIOX: An Infrastructure for Monitoring and
Optimization of HPC-I/O

Wednesday 11:00: BoF 17: Towards Exascale I/O with E10

Thursday 10:30: Research Paper: The SIOX Architecture � Coupling
Automatic Monitoring & Optimization of Parallel I/O

Julian M. Kunkel Autonomic I/O Optimization with SIOX 21 / 21



Finally: SIOX and You

Think we missed a problem?

Think you could solve one?

Like to see SIOX on your
favourite �le system?

We cordially invite you to become
involved at

http://www.HPC-IO.org

Julian M. Kunkel Autonomic I/O Optimization with SIOX 22 / 21



Activity Patterns: Example Cause-and-E�ect Chain

Julian M. Kunkel Autonomic I/O Optimization with SIOX 23 / 21


	Introduction
	SIOX: An Architecture for Autonomous I/O Optimization
	Modularity
	High-Level Design: Faces of SIOX
	Example Configurations
	Overhead

	Instrumentation
	Low-Level API
	Instrumentation

	Live Demonstrations
	Simplifying I/O Research
	Injection of “I/O-Hints”

	Discussion
	Appendix

