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Introduction

Autonomic I/O Optimization?

There are many options to tune the I/O-stack, e.g.

MPI hints, HDF5 properties, open �ags, cache size, posix_fadvise()
Command line tools: lfs setstripe

Setup/initialization of a storage system
Environment variables

Many options are of technical nature

Performance gain/loss depend on hardware, software
Speci�c to �le system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Performance-portability is unpredictable
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Introduction

Goals of this BoF

Discussion of

(Semi-)Automatic detection and healing of performance issues!
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Introduction

Towards Autonomic Optimization with SIOX
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SIOX will

collect and analyse

activity patterns and
performance metrics

in order to

assess system performance

locate and diagnose problem

learn & apply optimizations

intelligently steer monitoring
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Introduction

Partners and Funding

Funded by the BMBF
Grant No.: 01 IH 11008 B

Start: Juli 1st, 2011

End: September 30, 2013
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SIOX: An Architecture for Autonomous I/O Optimization
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SIOX: An Architecture for Autonomous I/O Optimization Modularity

Modularity

The SIOX architecture is �exible and developed in C++ components

License: LGPL, vendor friendly

Upon start-up of (instrumented) applications, modules are loaded

Con�guration �le de�nes modules and options

Choose advantageous plug-ins
Regulate overhead

For debugging, modules may create reports

May gather statistics of (application) behavior / activity
Provide (internal) usage or overhead statistics
These reports can be output at �application� termination
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SIOX: An Architecture for Autonomous I/O Optimization High-Level Design: Faces of SIOX

Faces of SIOX (1): General System Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
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and optimizations
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Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.
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SIOX: An Architecture for Autonomous I/O Optimization High-Level Design: Faces of SIOX

Faces of SIOX (2): Con�guration for Online Mode

No pattern recording, optimization without machine learning
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SIOX: An Architecture for Autonomous I/O Optimization High-Level Design: Faces of SIOX

Faces of SIOX (3): Con�guration for Static Knowledge

Apply static best-practices with low overhead.

Compute node

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations

A con�guration with a node-global daemon is also possible
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SIOX: An Architecture for Autonomous I/O Optimization Example Con�gurations

Module Interactions of an Example Con�guration
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SIOX: An Architecture for Autonomous I/O Optimization Example Con�gurations

Intelligent Monitoring � Controlled by Energy Consumption
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SIOX: An Architecture for Autonomous I/O Optimization Example Con�gurations

Features of the Working Prototype

Monitoring
Application (activity) behavior
Ontology and system information
Data can be stored in �les or Postgres database
Trace reader

Daemon
Applications forward activities to the daemon
Node statistics are captured
Energy consumption (RAPL) can be captured

Activity plug-ins
GenericHistory plug-in tracks performance, proposes MPI hints
Fadvise (ReadAhead) injector
FileSurveyor prototype � Darshan-like

Reasoner component (with simple decision engine)
Intelligent monitoring: trigger monitoring on abnormal behavior

Reporting of statistics on console or �le (independent and MPI-aware)
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SIOX: An Architecture for Autonomous I/O Optimization Overhead

System Con�guration

Test system

10 compute nodes

10 I/O nodes with Lustre

Compute Nodes

Dual-socket Intel Xeon X5650@2.67 GHz

Ubuntu 12.04

Applications are compiled with: GCC 4.7.2, OpenMPI 1.6.5

I/O Nodes

Intel Xeon E3-1275@3.4 GHz, 16 GByte RAM

Seagate Barracuda 7200.12 (ca. 100 MiB/s)

CentOS 6.5, Lustre 2.5
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SIOX: An Architecture for Autonomous I/O Optimization Overhead

MPI 4-levels-of-Access

Each process accesses 10240 blocks of 100KiB

Several hint sets are evaluated
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Performance comparison of the 4-levels-of-access on our Lustre �le system. The hints
increase the collective bu�er size to 200MB and disable data sieving.
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Summary

Summary

SIOX aims to capture and optimize I/O

on all layers and �le systems

We are building a modular and open system

Intelligent monitoring: Reasoner triggers based on abnormality

We can change behavior without modifying code!

Design the optimization once, apply on many applications

Remark: We are contributing components to Exascale10
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Instrumentation Low-Level API

Low-Level API � Overview and Instrumentation

C-Interface for monitoring / analysis

Monitor activities and system statistics
Query suitable optimization

Relies on modules to

store activities
store and query (ontology and system) information

Instrumentation uses low-level-API
A tool and work�ow is provided; already instrumented:

POSIX (stdio and low-level)
MPIIO
NetCDF (initial)
HDF5 (initial)
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Instrumentation Instrumentation

Instrumentation

Work�ow

Annotation of header �le

Tool siox-wrapper-generator creates libraries

Run-time instrumentation with LD_PRELOAD
Compile-time instrumentation using ld �wrap

siox-inst tool simpli�es instrumentation

Header annotations for MPI_File_write_at()
//@activity

//@activity_link_size fh

//@activity_attribute filePosition offset

//@splice_before ''int intSize; MPI_Type_size(datatype, &intSize);

uint64_t size=(uint64_t)intSize*(uint64_t)count;''

//@activity_attribute bytesToWrite size

//@error ''ret!=MPI_SUCCESS'' ret

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void * buf, int count,

MPI_Datatype datatype, MPI_Status * status);
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Simplifying I/O Research Injection of �I/O-Hints�

Optimization Plug-in: Read-Ahead with Fadvise

Plug-in injects posix_fadvise() for strided access

vs. no prefetching vs. in code embedded execution

Compute �Benchmark� reads data, then sleeps

100µs and 10ms for 20KiB and 1000KiB stride, respectively

Results

Experiment 20KiB stride 1000KiB stride

Regular execution 97.1µs 7855.7µs

Embedded fadvise 38.7µs 45.1µs

SIOX fadvise read-ahead 52.1µs 95.4µs

Time needed to read one 1KiB data block in a strided access pattern.
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Discussion

Discussion

Other Activities at ISC

Research Poster 12: SIOX: An Infrastructure for Monitoring and
Optimization of HPC-I/O

Wednesday 11:00: BoF 17: Towards Exascale I/O with E10

Thursday 10:30: Research Paper: The SIOX Architecture � Coupling
Automatic Monitoring & Optimization of Parallel I/O
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Finally: SIOX and You

Think we missed a problem?

Think you could solve one?

Like to see SIOX on your
favourite �le system?

We cordially invite you to become
involved at

http://www.HPC-IO.org
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Activity Patterns: Example Cause-and-E�ect Chain
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