on & Motivation mplementation

A Semantics-Aware 1/O Interface for High
Performance Computing

Michael Kuhn

Scientific Computing
Department of Informatics
University of Hamburg

2013-06-18

1form
i'h‘ Universitit Hamburg dle ZUkunﬂ

DER FORSCHUNG | DER LEHRE | DER BILDUNG

ion & Motivation Implementation

Introduction & Motivation
Design & Implementation
Evaluation

Conclusion & Future Work

/15

Introduction & Motivation % Implementation

@00

Introduction

m Parallel Application
m Exhibits particular access pattern
m Usually different for every application
m Examples: Earth system models

Introduction & Motivation . Implementation on Conclusion & Future

@00

Introduction

m Parallel Application

m Exhibits particular access pattern
m Usually different for every application
m Examples: Earth system models

m File system

m Actually performs the |/O operations
m Examples: OrangeFS, Lustre, GPFS
m Usually optimized for specific use cases

Introduction & Motivation . Implementation on Conclusion & Futur

@00

Introduction

m Parallel Application

m Exhibits particular access pattern
m Usually different for every application
m Examples: Earth system models

m File system

m Actually performs the |/O operations
m Examples: OrangeFS, Lustre, GPFS
m Usually optimized for specific use cases

m Interface

m Defines which accesses are possible
m Examples: POSIX, MPI-I/O, HDF5, netCDF, ADIOS

m Semantics

m Defines how accesses are handled
m Examples: POSIX, Session, MPI-1/0O
m Sometimes single aspects are changeable (e. g. atomicity)

Introduction & Motivation & Implementation atio onclusion & Futur

000

Motivation

Parallel Application

netCDF
HDF5

MPI-I/O

ADIO

OrangeFS

BDB POSIX
File System

Block Storage

m Local POSIX file system for data and metadata
m Introduces overhead: path lookup, permissions, ...

m Lower layers do not have information about upper ones
m Different optimizations on each layer to use full potential

Introduction & Motivation i & Implementation

[ele] J

Motivation

m Semantical information about the data cannot be specified

m Examples: “This file is accessed concurrently.” or “This is a
checkpoint.”

m Information cannot be handed down in the I/O stack

m Lower layers do not support it or it is lost through the layers
m Optimizations have to be implemented within the upper layers

Introduction & Motivation & Implementation on Conclusion & Future

[ele] J

Motivation

m Semantical information about the data cannot be specified
m Examples: “This file is accessed concurrently.” or “This is a
checkpoint.”
m Information cannot be handed down in the I/O stack
m Lower layers do not support it or it is lost through the layers
m Optimizations have to be implemented within the upper layers
m Goal: Providing a semantics-aware 1/0O interface and file
system prototype

m Enough information to perform meaningful optimizations
m Can adapt to 1/O requirements of applications

Design & Implementation
[Je]ele]

m Minimize the overhead during normal operation

m Avoid POSIX file systems, which perform potentially

redundant operations

m Path lookup: Reading metadata, checking permissions, etc.
m Limited file system hierarchy

m Divided into stores, collections, and items

m Stores include collections, collections include items
m Accesses performed via so-called batches

m Each one can consist of multiple 1/O operations

m Example: Create multiple items in one batch

m Knowledge about all operations can be used for optimizations

Design & Implementation

o] Jele)

Design

m Specify the semantics of file system operations at runtime

m Atomicity, concurrency, consistency, persistency and safety
m Can be changed on a per-batch basis

Introduction & Motivation Design & Implementation
000 [o] Je]e]

Design

m Specify the semantics of file system operations at runtime

m Atomicity, concurrency, consistency, persistency and safety
m Can be changed on a per-batch basis

batch = new Batch(POSIX_SEMANTICS) ;

for (i = 0; i < 1000; i++)
{
item = new Item("Test" + i);
batch.add(collection.add(item)) ;
}

© 0O ~NOO P WN -

batch.execute () ;

uction & Motivation Design & Implementation o clusion & Futu

0000

JULEA Architecture

Parallel Application
ADIOS
JULEA

MongoDB

Object Store

Block Storage

m Less layers and less duplication of functionality
m ADIOS allows describing application 1/0 via an XML file

m Code is generated automatically
m Could be extended to specify additional semantical information

Introduction & Motivation Design & Implementation on Conclusion & Futur

[e]e]e])

Implementation

m Metadata stored in MongoDB

m NoSQL database systems usually scale well
m Still depends on an underlying POSIX file system

Support for multiple data back ends

m POSIX, GIO and NULL are implemented
m Object store back end is in progress

Built-in support for tracing client and server activities

m OTF and HDTrace are implemented
® Analyze and visualize the inner workings

m Run-time statistics are collected and exported

Introduction & Motivation Implementation Evaluation nclusion & Futur
0 0000

Setup

m Metadata benchmark using fileop

m Part of I0zone
m Extended to support the native file system interfaces

m Only most interesting metadata-heavy operations

m mkdir, rmdir, create, stat and delete

10/15

Evaluation
[o] Je]e]

Lustre
100,000
kel L
=1
g [
%
o]
S 10,000
o
8
kst
g , ,
) | .
il
1 000 | | | | | | J
1 2 6 12 24 36 48 60

Number of processes

mkdir —+ rmdir create K- stat £+ delete

11/15

JULEA

10,000,000
1,000,000

100,000

10,000

Operations per second

1,000 1 1 1 1 1 1]
1 2 6 12 24 36 48 60

Number of processes

mkdir =+ rmdir create K- stat £+ delete

JULEA (Batch)

100,000

Operations per second

1,000 1 1 1 1 1 1]
1 2 6 12 24 36 48 60

Number of processes

mkdir —+ rmdir create K- stat £+ delete

13/15

& Implementation on Conclusion & Future Work

Conclusion

m Current interfaces do not provide ways to specify the |/O
requirements of individual applications

m Semantical information could be used for optimizations
m New semantics-aware 1/O interface and file system prototype

m Allows application-specific semantics to be specified
m Multiple operations can be aggregated in batches

m Specify what to do and how to behave

m Leave the actual realization to the 1/O system
m Provide sane default semantics and templates

14 /15

& Implementation on Conclusion & Future Work

Future Work

Look at requirements of more real-world applications
m Evaluate potential benefits

Extend ADIOS to support the new 1/O interface
m Allow semantical information to be specified

Investigate transaction support
m Batches might be a suitable granularity
m Allow semantics to be implemented in plug-ins

m Optimize different aspects for specific hardware/software
environments

15/15

	Introduction & Motivation
	Design & Implementation
	Evaluation
	Conclusion & Future Work

