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Introduction

m Parallel Application

m Exhibits particular access pattern
m Usually different for every application
m Examples: Earth system models

m File system

m Actually performs the |/O operations
m Examples: OrangeFS, Lustre, GPFS
m Usually optimized for specific use cases

m Interface

m Defines which accesses are possible
m Examples: POSIX, MPI-I/O, HDF5, netCDF, ADIOS

m Semantics

m Defines how accesses are handled
m Examples: POSIX, Session, MPI-1/0O
m Sometimes single aspects are changeable (e. g. atomicity)
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Motivation

Parallel Application

netCDF
HDF5

MPI-I/O

ADIO

OrangeFS

BDB POSIX
File System

Block Storage

m Local POSIX file system for data and metadata
m Introduces overhead: path lookup, permissions, ...

m Lower layers do not have information about upper ones
m Different optimizations on each layer to use full potential
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m Semantical information about the data cannot be specified

m Examples: “This file is accessed concurrently.” or “This is a
checkpoint.”

m Information cannot be handed down in the I/O stack

m Lower layers do not support it or it is lost through the layers
m Optimizations have to be implemented within the upper layers
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Motivation

m Semantical information about the data cannot be specified
m Examples: “This file is accessed concurrently.” or “This is a
checkpoint.”
m Information cannot be handed down in the I/O stack
m Lower layers do not support it or it is lost through the layers
m Optimizations have to be implemented within the upper layers
m Goal: Providing a semantics-aware 1/0O interface and file
system prototype

m Enough information to perform meaningful optimizations
m Can adapt to 1/O requirements of applications
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m Minimize the overhead during normal operation

m Avoid POSIX file systems, which perform potentially

redundant operations

m Path lookup: Reading metadata, checking permissions, etc.
m Limited file system hierarchy

m Divided into stores, collections, and items

m Stores include collections, collections include items
m Accesses performed via so-called batches

m Each one can consist of multiple 1/O operations

m Example: Create multiple items in one batch

m Knowledge about all operations can be used for optimizations
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Design

m Specify the semantics of file system operations at runtime

m Atomicity, concurrency, consistency, persistency and safety
m Can be changed on a per-batch basis
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Design

m Specify the semantics of file system operations at runtime

m Atomicity, concurrency, consistency, persistency and safety
m Can be changed on a per-batch basis

batch = new Batch(POSIX_SEMANTICS) ;

for (i = 0; i < 1000; i++)
{
item = new Item("Test" + i);
batch.add(collection.add(item)) ;
}
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batch.execute () ;
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JULEA Architecture

Parallel Application
ADIOS
JULEA

MongoDB

Object Store

Block Storage

m Less layers and less duplication of functionality
m ADIOS allows describing application 1/0 via an XML file

m Code is generated automatically
m Could be extended to specify additional semantical information
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Implementation

m Metadata stored in MongoDB

m NoSQL database systems usually scale well
m Still depends on an underlying POSIX file system

Support for multiple data back ends

m POSIX, GIO and NULL are implemented
m Object store back end is in progress

Built-in support for tracing client and server activities

m OTF and HDTrace are implemented
® Analyze and visualize the inner workings

m Run-time statistics are collected and exported
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Setup

m Metadata benchmark using fileop

m Part of I0zone
m Extended to support the native file system interfaces

m Only most interesting metadata-heavy operations

m mkdir, rmdir, create, stat and delete
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Conclusion

m Current interfaces do not provide ways to specify the |/O
requirements of individual applications

m Semantical information could be used for optimizations
m New semantics-aware 1/O interface and file system prototype

m Allows application-specific semantics to be specified
m Multiple operations can be aggregated in batches

m Specify what to do and how to behave

m Leave the actual realization to the 1/O system
m Provide sane default semantics and templates
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Future Work

Look at requirements of more real-world applications
m Evaluate potential benefits

Extend ADIOS to support the new 1/O interface
m Allow semantical information to be specified

Investigate transaction support
m Batches might be a suitable granularity
m Allow semantics to be implemented in plug-ins

m Optimize different aspects for specific hardware/software
environments
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