
Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

A Semantics-Aware I/O Interface for High
Performance Computing

Michael Kuhn

Scientific Computing
Department of Informatics

University of Hamburg

2013-06-18

1 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

1 Introduction & Motivation

2 Design & Implementation

3 Evaluation

4 Conclusion & Future Work

2 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Introduction

Parallel Application

Exhibits particular access pattern
Usually different for every application
Examples: Earth system models

File system

Actually performs the I/O operations
Examples: OrangeFS, Lustre, GPFS
Usually optimized for specific use cases

Interface

Defines which accesses are possible
Examples: POSIX, MPI-I/O, HDF5, netCDF, ADIOS

Semantics

Defines how accesses are handled
Examples: POSIX, Session, MPI-I/O
Sometimes single aspects are changeable (e. g. atomicity)

3 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Introduction

Parallel Application

Exhibits particular access pattern
Usually different for every application
Examples: Earth system models

File system

Actually performs the I/O operations
Examples: OrangeFS, Lustre, GPFS
Usually optimized for specific use cases

Interface

Defines which accesses are possible
Examples: POSIX, MPI-I/O, HDF5, netCDF, ADIOS

Semantics

Defines how accesses are handled
Examples: POSIX, Session, MPI-I/O
Sometimes single aspects are changeable (e. g. atomicity)

3 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Introduction

Parallel Application

Exhibits particular access pattern
Usually different for every application
Examples: Earth system models

File system

Actually performs the I/O operations
Examples: OrangeFS, Lustre, GPFS
Usually optimized for specific use cases

Interface

Defines which accesses are possible
Examples: POSIX, MPI-I/O, HDF5, netCDF, ADIOS

Semantics

Defines how accesses are handled
Examples: POSIX, Session, MPI-I/O
Sometimes single aspects are changeable (e. g. atomicity)

3 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Motivation

Parallel Application

netCDF

MPI-I/O

OrangeFS

POSIX
File System

BDB

Block Storage

ADIO

HDF5

Local POSIX file system for data and metadata
Introduces overhead: path lookup, permissions, . . .

Lower layers do not have information about upper ones
Different optimizations on each layer to use full potential

4 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Motivation

Semantical information about the data cannot be specified

Examples: “This file is accessed concurrently.” or “This is a
checkpoint.”

Information cannot be handed down in the I/O stack

Lower layers do not support it or it is lost through the layers
Optimizations have to be implemented within the upper layers

Goal: Providing a semantics-aware I/O interface and file
system prototype

Enough information to perform meaningful optimizations
Can adapt to I/O requirements of applications

5 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Motivation

Semantical information about the data cannot be specified

Examples: “This file is accessed concurrently.” or “This is a
checkpoint.”

Information cannot be handed down in the I/O stack

Lower layers do not support it or it is lost through the layers
Optimizations have to be implemented within the upper layers

Goal: Providing a semantics-aware I/O interface and file
system prototype

Enough information to perform meaningful optimizations
Can adapt to I/O requirements of applications

5 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Design

Minimize the overhead during normal operation

Avoid POSIX file systems, which perform potentially
redundant operations
Path lookup: Reading metadata, checking permissions, etc.

Limited file system hierarchy

Divided into stores, collections, and items
Stores include collections, collections include items

Accesses performed via so-called batches

Each one can consist of multiple I/O operations
Example: Create multiple items in one batch
Knowledge about all operations can be used for optimizations

6 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Design

Specify the semantics of file system operations at runtime

Atomicity, concurrency, consistency, persistency and safety
Can be changed on a per-batch basis

1 batch = new Batch(POSIX_SEMANTICS);

2
3 for (i = 0; i < 1000; i++)

4 {

5 item = new Item("Test" + i);

6 batch.add(collection.add(item));

7 }

8
9 batch.execute ();

7 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Design

Specify the semantics of file system operations at runtime

Atomicity, concurrency, consistency, persistency and safety
Can be changed on a per-batch basis

1 batch = new Batch(POSIX_SEMANTICS);

2
3 for (i = 0; i < 1000; i++)

4 {

5 item = new Item("Test" + i);

6 batch.add(collection.add(item));

7 }

8
9 batch.execute ();

7 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

JULEA Architecture

Parallel Application

Block Storage

JULEA

Object Store
MongoDB

Parallel Application

Parallel ApplicationADIOS

Less layers and less duplication of functionality

ADIOS allows describing application I/O via an XML file

Code is generated automatically
Could be extended to specify additional semantical information

8 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Implementation

Metadata stored in MongoDB

NoSQL database systems usually scale well
Still depends on an underlying POSIX file system

Support for multiple data back ends

POSIX, GIO and NULL are implemented
Object store back end is in progress

Built-in support for tracing client and server activities

OTF and HDTrace are implemented
Analyze and visualize the inner workings

Run-time statistics are collected and exported

9 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Setup

Metadata benchmark using fileop

Part of IOzone
Extended to support the native file system interfaces

Only most interesting metadata-heavy operations

mkdir, rmdir, create, stat and delete

10 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Lustre

1,000

10,000

100,000

1 2 6 12 24 36 48 60

O
pe

ra
ti

on
s 

pe
r 

se
co

nd

Number of processes

mkdir rmdir create stat delete

11 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

JULEA

1,000

10,000

100,000

1,000,000

10,000,000

1 2 6 12 24 36 48 60

O
pe

ra
ti

on
s 

pe
r 

se
co

nd

Number of processes

mkdir rmdir create stat delete

12 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

JULEA (Batch)

1,000

10,000

100,000

1 2 6 12 24 36 48 60

O
pe

ra
ti

on
s 

pe
r 

se
co

nd

Number of processes

mkdir rmdir create stat delete

13 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Conclusion

Current interfaces do not provide ways to specify the I/O
requirements of individual applications

Semantical information could be used for optimizations

New semantics-aware I/O interface and file system prototype

Allows application-specific semantics to be specified
Multiple operations can be aggregated in batches

Specify what to do and how to behave

Leave the actual realization to the I/O system
Provide sane default semantics and templates

14 / 15



Introduction & Motivation Design & Implementation Evaluation Conclusion & Future Work

Future Work

Look at requirements of more real-world applications

Evaluate potential benefits

Extend ADIOS to support the new I/O interface

Allow semantical information to be specified

Investigate transaction support

Batches might be a suitable granularity

Allow semantics to be implemented in plug-ins

Optimize different aspects for specific hardware/software
environments

15 / 15


	Introduction & Motivation
	Design & Implementation
	Evaluation
	Conclusion & Future Work

