
Introduction Software environment Energy analysis Conclusion

Tracing and Visualization of Energy Related

Metrics
8th Workshop on High-Performance, Power-Aware Computing

2012, Shanghai

Timo Minartz, Julian Kunkel, Thomas Ludwig

timo.minartz@informatik.uni-hamburg.de

Scientific Computing
Department of Informatics

University of Hamburg

21-05-2012

1 / 20



Introduction Software environment Energy analysis Conclusion

Motivation

HPC is a cost-intensive tool

Several Megawatts per installation

Greening of HPC attracts many scientists and raises
unconventional approaches

E.g. usage of performance and sleep states of hardware
But: Energy-performance trade off is still difficult to analyze

2 / 20



Introduction Software environment Energy analysis Conclusion

1 Introduction

2 Software environment
HDTrace
Sunshot

3 Energy analysis
Hardware environment
Exemplary visualization

4 Conclusion

3 / 20



Introduction Software environment Energy analysis Conclusion

State-of-the-art

Various unconventional hardware architectures evaluated

New measurement infrastructure on all levels

Infrastructure, systems and components

Allows evaluation of software approaches like energy-efficiency
tuning of libraries and applications

But: Hardware mechanisms like performance or sleep states
make it difficult to evaluate measurements

High potential for wrong decisions
Fast and frequent state transitions make it difficult to view
changes

Conventional approach is to conduct several measurements
over larger time frames to smooth the usage of hardware states

4 / 20



Introduction Software environment Energy analysis Conclusion

Approach

Correlate MPI applications with hardware utilization, hardware
states and power consumption using off-line tracing

Evaluate the quality of energy-saving mechanisms

Identification of wait times in the application and relate them to
hardware states
Point out wrong decisions about hardware states

Enhance already existing tracing environment HDTrace to trace
energy-related metrics

Use visualization tool Sunshot to correlate application and new
metrics

5 / 20



Introduction Software environment Energy analysis Conclusion

1 Introduction

2 Software environment

3 Energy analysis

4 Conclusion

6 / 20



Introduction Software environment Energy analysis Conclusion

HDTrace

HDTrace

Experimental tracing environment developed under the GPL

Events (like MPI function calls) are stored in XML files

Statistics (like system activity) are stored in a binary format
with XML description header

Project file links together events and statistic files

Available statistics

Component utilization (using libgtop)

Processor performance counters (using likwid)

Power consumption

7 / 20



Introduction Software environment Energy analysis Conclusion

HDTrace

Sampling asynchronous hardware states

Processor

P-State frequency via cpufreq and/or cpufreq-stats

C-State usage via cpuidle

Socket voltage via lm-sensors and IPMI

Hard disk

Power saving mode via hdparm

Network Interface Card

Speed and Duplex mode via ethtool

8 / 20



Introduction Software environment Energy analysis Conclusion

HDTrace

Tracing overhead
Sheet1

Page 1

0 1000 10000 100000 1000000
0

10

20

30

40

50

60

70

80

90

1

10

100

1000

10000

100000

Request Updates every 100 ms

Runtime Size

Trace interval (microseconds)

R
u

n
tim

e
 (

se
co

n
d

s)

T
ra

ce
 s

iz
e

 (
kB

)

9 / 20



Introduction Software environment Energy analysis Conclusion

Sunshot

Sunshot

Timeline-based Java-Swing application to visualize trace files

Based on Jumpshot

Supports profiles, histograms, user-defined derived metrics...

User-defined derived metrics

Create new statistic timelines based on traced statistics and
user-defined operations

Possible operations are add, mul, sub, div, avg, min and max

10 / 20



Introduction Software environment Energy analysis Conclusion

Sunshot

User-derived statistics

MPI Application

Average processor frequency per node

Node power consumption

Average processor frequency per application

Total power consumption per application

11 / 20



Introduction Software environment Energy analysis Conclusion

1 Introduction

2 Software environment

3 Energy analysis

4 Conclusion

12 / 20



Introduction Software environment Energy analysis Conclusion

Hardware environment

Hardware

Details

3 × LMG 450 power meter

4 channels each
up to 20 samples per second

5 × AMD Opteron 6168

Dual socket
24 cores per node

5 × Intel Xeon X5560

Dual socket
8 cores per node
SMT disabled

13 / 20



Introduction Software environment Energy analysis Conclusion

Exemplary visualization

MPI barrier with ondemand governor for all cores

Core frequency increases when entering barrier

Power consumption increases

MPI implementation seems to use busy-waiting

14 / 20



Introduction Software environment Energy analysis Conclusion

Exemplary visualization

MPI barrier at fixed max frequency for all cores

C-State usage changes from C3 to C0

Main reason for power consumption increase

15 / 20



Introduction Software environment Energy analysis Conclusion

Exemplary visualization

Switching processor states under load

Socket bandwidth decreases when decreasing core frequency

Socket voltage decreases when all cores on a socket are
running at decreased frequency

Node power decreases when socket voltage decreases
16 / 20



Introduction Software environment Energy analysis Conclusion

Exemplary visualization

Switching hardware states from applications

Processor

Reduce core frequency on memory-bound application phases

Reduce core frequency in communication and I/O phases

Disk and NIC

Sleep / reduce speed if unused

Problems: Wrong decisions

Application behavior changes

Library or OS interaction

17 / 20



Introduction Software environment Energy analysis Conclusion

Exemplary visualization

MPI barrier with switching devices

Switching DISK and NIC mode

Visualization of effect in hardware states

Utilization allows to identify wrong decisions

18 / 20



Introduction Software environment Energy analysis Conclusion

Conclusions and future work

Conclusions

Correlation of MPI application and device utilization is helpful to
detect performance issues

Visualization of idle states and power consumption provides
further insights

Very helpful for evaluating (existing) energy saving strategies

Future work

Detailed studies about power saving potential of scientific
applications

19 / 20



Introduction Software environment Energy analysis Conclusion

Trace file size dependent on runtime
Sheet1

Page 1

1 100 1000 10000
0.1

1

10

100

1000

10000

100000

1000000

Tracefile size dependent on runtime

Single node

1 ms
10 ms
100 ms

Runtime (s)

F
ile

si
ze

 (
kB

)

20 / 20


	Introduction
	Software environment
	HDTrace
	Sunshot

	Energy analysis
	Hardware environment
	Exemplary visualization

	Conclusion

