Design	Conclusion

Simulation-Aided Performance Evaluation of Server-Side Input/Output Optimizations

Michael Kuhn, Julian Kunkel, Thomas Ludwig

Scientific Computing Department of Informatics University of Hamburg

2012-02-16

Design	Conclusion

1 Introduction

2 Design

Introduction	Design		Conclusion
● O	000	000	0

Parallel Distributed File Systems

- Most operations are expensive to perform
 - Especially true for large amounts of small requests
 - Large number of clients performing many small operations can easily saturate the I/O system
- Many algorithms and optimizations for efficient I/O exist
- Basically two categories:
 - Client-side: trying to minimize the work the servers have to do
 - Server-side: let the servers handle all the work themselves

Introduction	Design	Conclusion
○●	000	O

State of the Art

- Traditionally, data is accessed in contiguous regions
- Non-contiguous I/O enables applications to access several regions in one request
- Collective I/O explicitly relates I/O performed by multiple clients with each other
- *Two-Phase* is an optimization for collective I/O
 - Clients collaborate during I/O
- Goal: analyze whether comparable performance results can be achieved with server-side optimizations

Design	Conclusion
000	

Simulation Framework

- Presented optimizations are implemented in a simulator as a first step
- *HDTrace* can simulate, trace and visualize applications
- PIOsimHD allows simulating arbitrary network topologies, servers and client applications
 - Goal: allow easy and fast prototyping of new algorithms
- Advantages:
 - Not dependent on any specific project environment
 - Can serve as a starting point for adoption into real-life projects

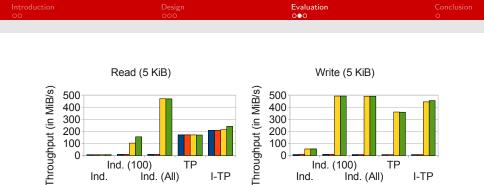
	Design 0●0	Conclusion O
<u> </u>		

Cache Layers

- NoCache does no caching at all
 - All I/O operations are forwarded directly to the I/O subsystem
- SimpleWriteBehindCache does rudimentary caching
 - Operations are written out in a background thread
 - Write operations do not block the calling client
- AggregationCache performs simple read/write optimizations
 - Tries to combine I/O operations with queued ones
- ServerDirectedIO additionally reorders I/O operations
 - Merge multiple client requests into larger contiguous operations
 - Unnecessary write requests are discarded early
 - Access to all pending requests

00 00 00 00 0 0		Design		Conclusion
	00	000	000	0

Comparison With Existing File Systems


Comparison with PVFS:

- Normal buffer size per I/O operation is 256 KiB
- Only a subset of reads is announced to the I/O subsystem
- Large reads are fragmented
 - Might cause the access pattern to look like random accesses
 - Can cause a serious performance degradation
- Read performance can be compared to NoCache
- Comparison with Linux:
 - Performs write-behind
 - Some sort of aggregation
 - Observable write performance comparable to AggregationCache

Design 000	Evaluation ●00	Conclusion o

Cluster Setup

- Simulated cluster comprised of twenty nodes
 - Ten clients, ten (file) servers:
 - 1 GBits/s NIC
 - 50 MiB/s HDD
 - Maximum I/O throughput of 500 MiB/s
 - Data is striped across all servers with a round-robin scheme
- Comparison uses individual and collective I/O operations
 - 1.000 MiB file divided into data blocks of equal size
 - Individual: one data block (Ind.), 100 data blocks (Ind. (100)) or all data blocks (Ind. (All)) accessed in each iteration
 - Collective: one collective operation to access all data blocks
 - Resembles I/O patterns often found in HPC applications
 - Iterative algorithms perform I/O every *n* iterations

 NoCache (NC), SimpleWriteBehindCache (SWBC), AggregationCache (AC) and ServerDirectedIO (SDIO)

■NC ■SWBC ■AC ■SDIO

- Batching operations results in performance gains
- For write operations, less batching is required
 - Can be processed in the background

■NC ■SWBC ■AC ■SDIO

Introduction	Design 000	Evaluation 00●	Conclusion O
	Read (50 KiB)	Write (50 KiB)	
	(single for the second	(\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	

NC SWBC AC SDIO

Read (512 KiB) Write (512 KiB) Throughput (in MiB/s) Throughput (in MiB/s) 500 500 400 400 300 300 200 200 100 100 0 0 Ind. (100) TP Ind. (100) TΡ Ind. (All) I-TP Ind. Ind. (All) I-TP Ind. ■NC ■SWBC ■AC ■SDIO ■NC ■SWBC ■AC ■SDIO

NC SWBC AC SDIO

Better performance with non-optimizing cache layersDue to the larger data block size

Design 000	Conclusion •

- Complex client-side optimizations are not necessarily better than relatively simple server-side optimizations
 - AggregationCache and ServerDirectedIO deliver better performance
- Necessary to batch operations or use large operations
- Simple server-side optimizations are often sufficient for our use cases
 - Could alleviate the need for sophisticated client-side optimizations
- Some room for improvement:
 - ServerDirectedIO does not influence the order in which the clients send their data
 - Benchmarks using SSDs would be interesting