| Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|-----------------------|---------------------|----------------------------|
|                       |                     |                            |
|                       |                     |                            |

## Optimizations for Two-Phase Collective I/O Introducing Interleaved and Pipelined Two-Phase

<u>Michael Kuhn</u>, Julian Kunkel, Yuichi Tsujita, Hidetaka Muguruma, Thomas Ludwig

> Research Group Scientific Computing Department of Informatics University of Hamburg

> > 2011-09-02

| Introduction | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|--------------|-----------------------|---------------------|----------------------------|
|              |                       |                     |                            |
|              |                       |                     |                            |
|              |                       |                     |                            |

- Motivation
- Two-Phase

2 Interleaved Two-Phase

- 3 Pipelined Two-Phase
- 4 Conclusion and Future Work

| Introduction Int | terleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|------------------|---------------------|---------------------|----------------------------|
| _00000           |                     |                     |                            |
| Motivation       |                     |                     |                            |

- There are many algorithms for efficient I/O on parallel distributed file systems
  - The Two-Phase protocol is one of them
- Optimizations can be classified into two categories
  - Client-side optimizations: trying to minimize the work for the servers
    - For example, caching and batching in clients' memory
    - Two-Phase is a client-side optimization
  - Server-side optimizations: let the servers employ their own optimizations
- Two separate improvements for Two-Phase
  - Interleaved Two-Phase from the University of Hamburg
  - Pipelined Two-Phase from Kinki University

| Introduction<br>○●○ | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|---------------------|-----------------------|---------------------|----------------------------|
| Two-Phase           |                       |                     |                            |

- Collective I/O relates I/O operations performed by multiple clients with each other
  - Using individual I/O, they may appear in a random order
  - Clients can collaborate, allowing optimizations that would otherwise be impossible
- Two-Phase is an optimization for collective I/O
  - Implemented in ROMIO
  - Clients share information about their I/O requests
  - Separate communication and I/O phases are used to perform the actual I/O
  - Introduces additional communication overhead



Iteration 1 – I/O Phase





Iteration 2 – I/O Phase

Figure: Two-Phase for a collective read operation with two iterations

Initialization: communicate and negotiate file regions

- a Decide whether Two-Phase protocol should be used
- **b** Form a file region containing all of the clients' file regions
- c Split up file region equally into so-called file domains

Each client is then responsible for one file domain



Figure: Two-Phase for a collective read operation with two iterations

I/O phase: clients read data

Iteration 1 - Comm. Phase

C2

2.

Only data within own file domains is accessed

C3

Size is limited by an internal buffer used for collective I/O

4.

C2

Iteration 2 - Comm. Phase

The buffer size currently defaults to 16 MiB



Figure: Two-Phase for a collective read operation with two iterations

2 Communication phase: data is forwarded to the appropriate clients

Iteration 1 - Comm. Phase

Any client may need to communicate with all other clients

Iteration 2 - Comm. Phase





Figure: Two-Phase for a collective read operation with two iterations

- The two phases are repeated until the I/O is completed
- For writing, the order of the phases is reversed
  - Additionally, read-modify-write may be necessary

| Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|-----------------------|---------------------|----------------------------|
|                       |                     |                            |
|                       |                     |                            |

- 2 Interleaved Two-Phase
  - Design
  - Evaluation
- 3 Pipelined Two-Phase
- 4 Conclusion and Future Work

|        | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|--------|-----------------------|---------------------|----------------------------|
| Design |                       |                     |                            |

- File domains lead to non-contiguous accesses
- May have a negative effect on performance
- Due to striping schemes, the mapping to the servers may be suboptimal



Figure: Suboptimal Two-Phase mapping



Figure: Interleaved Two-Phase access pattern with two I/O iterations

- Accesses within each I/O iteration are contiguous
- File region is divided into chunks of the size of the Two-Phase buffer
- Chunks are accessed by the clients in a round-robin fashion

|            | Interleaved Two-Phase<br>○○●○ | Pipelined Two-Phase | Conclusion and Future Work |
|------------|-------------------------------|---------------------|----------------------------|
| Evaluation |                               |                     |                            |

- Used PIOsimHD simulator
  - Fast prototyping and evaluation of new ideas
- Ten clients and ten servers
- Test uses collective I/O operations
- File is 1.000 MiB in size
  - Divided into data blocks of equal size
  - Clients access data blocks using a round-robin scheme
- One collective read/write per client
  - Accesses are interleaved

|            | Interleaved Two-Phase<br>○○○● | Pipelined Two-Phase | Conclusion and Future Work |
|------------|-------------------------------|---------------------|----------------------------|
| Evaluation |                               |                     |                            |



Figure: Interleaved Two-Phase comparison

- Maximum throughput is 500 MiB/s
- Write faster than read, because of write-behind
  - Allows overlapping Two-Phase communication with actual I/O on the servers

| Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|-----------------------|---------------------|----------------------------|
|                       |                     |                            |
|                       |                     |                            |

- 2 Interleaved Two-Phase
- 3 Pipelined Two-Phase
  - Design
  - Evaluation



|        | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|--------|-----------------------|---------------------|----------------------------|
| Design |                       |                     |                            |

- In Two-Phase, no I/O is performed during the communication phase and vice versa
- Overlap I/O and communication phases with POSIX threads
- Almost all of the communication time can hidden behind the I/O operations and vice versa
  - Except for startup and finalization
  - Can increase the performance by a factor of two





Figure: Pipelined Two-Phase execution

- I/O thread and shuffle thread
  - I/O thread performs data access
  - Shuffle thread exchanges data among peers
- Each thread has a queue of operations
  - Up to four I/O requests can be queued

|            | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|------------|-----------------------|---------------------|----------------------------|
| Evaluation |                       |                     |                            |

- Intel Pentium D cluster
- Four clients and five servers
- HPIO benchmark (version 1.55)
- 1 GiB of data is read from a file
  - Divided into four 256 MiB file domains for each MPI process
- Two-Phase buffer size from 1 MiB to 256 MiB
  - Doubling the buffer size halves the number of iterations

|            | Interleaved Two-Phase | Pipelined Two-Phase<br>○○○●○ | Conclusion and Future Work |
|------------|-----------------------|------------------------------|----------------------------|
| Evaluation |                       |                              |                            |



Figure: Throughput of original and Pipelined Two-Phase protocols

- Larger Two-Phase buffer sizes increase performance
- Pipelined Two-Phase better for every buffer size except the maximum
  - Maximum performance with 8 MiB buffer





Figure: Estimated operation times in the Pipelined Two-Phase

More overlap with more iterations

$$T_{pipe} = \left(rac{N_{itr} - 1}{N_{itr}}
ight) \cdot \max(t_{IO}, t_{com}) + \left(rac{1}{N_{itr}}
ight) \cdot (t_{IO} + t_{com})$$

More overhead with more iterations

| Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|-----------------------|---------------------|----------------------------|
|                       |                     |                            |
|                       |                     |                            |

- 2 Interleaved Two-Phase
- 3 Pipelined Two-Phase
- 4 Conclusion and Future Work
  - Conclusion
  - Future Work

|            | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work |
|------------|-----------------------|---------------------|----------------------------|
|            |                       |                     | <b>●</b> 0                 |
| Conclusion |                       |                     |                            |
|            |                       |                     |                            |

- Two-Phase is a client-side optimization
- The presented modifications promise better performance
  - Up to 30–40% for Interleaved Two-Phase
  - Up to 100% for Pipelined Two-Phase
- Interleaved Two-Phase changes I/O pattern
  - Better suited for the striping in parallel distributed file systems
- Pipelined Two-Phase uses POSIX threads to overlap communication and I/O

|             | Interleaved Two-Phase | Pipelined Two-Phase | Conclusion and Future Work<br>○● |
|-------------|-----------------------|---------------------|----------------------------------|
| Future Work |                       |                     |                                  |

- Combine Interleaved and Pipelined Two-Phase
  - Due to being developed in different working groups, this has not happened yet
- Pipelined Two-Phase only implements collective reads at the moment
  - Design of the same protocol for write operation has been started
- Improve the logic used to decide whether to use the Two-Phase protocol
  - For example, use information about the underlying I/O subsystem
- Query underlying file system for information about optimal access patterns