Managing Hardware Power Saving Modes for High Performance Computing Second International Green Computing Conference 2011, Orlando

Timo Minartz, Michael Knobloch, Thomas Ludwig, Bernd Mohr

timo.minartz@informatik.uni-hamburg.de

Scientific Computing Department of Informatics University of Hamburg

26-07-2011

Introduction 000		

Motivation

High Performance Computing

- Increasing performance and efficiency of calculation units
 - But: Increasing need for calculation power increases size of installations
- High operational costs for large-scale high performance installations
- High carbon footprint of installations should be reduced for environmental and political reasons

1 Introduction

- 2 Hardware Power Saving Modes in HPC
- 3 Power Mode Control System
- 4 Evaluation
- 5 Conclusion and Future Work

Introduction				
000	0000	00	000000	000

Introduction (1)

High Performance Computing (HPC)

- Important tool in natural sciences to analyze scientific questions in silico
- Modeling and simulation instead of performing time consuming and error prone experiments
- Models from weather systems to protein folding to nanotechnology
- Leads to new observations and unterstanding of phenomena

Introduction			
000	0000	000000	

Introduction (2)

Top500 list – http://www.top500.org

- Since 1993 the Top500 list gathers information about achieved performance of supercomputers
- Exponential growth in computing performance can be observed
- Current (June 2011) rank #1: K computer by Fujitsu
 - Peak performance: 8773.63 TFlop/s
 - Power consumption: 9898.56 KW

Green500 list - http://www.green500.org

- Ranking based on energy-efficiency
- Energy-efficiency is defined as Flop/s per Watt
- K computer rank (June 2011): #6

Introduction		
000		

Exascale computing

Roadmap

- "Practical power limit" of 20 MW (U.S. Department of Energy)
- Energy-efficiency must be increased from different viewpoints
 - The data-center itself including cooling facilities etc.
 - The hardware running the scientific applications
 - The scientific applications themselves

Hardware Power Saving Modes in HPC		
●000		

Hardware power saving modes

Adaption of mechanism from mobile devices

- Idle / power saving modes of hardware
- Dynamic Voltage and Frequency Scaling of processors (DVFS)
- Adapt frequency and disable ports of network devices
- Spin down and flush caches of hard disks

HPC related problems

- Synchronization problems
- OS Jitter increase
- Possible performance loss

Hardware Power Saving Modes in HPC		
0000		

Idle power saving potential

- Opteron: up to 11% power savings
- Xeon: up to 18% power savings

Hardware Power Saving Modes in HPC		
0000		

CPU power saving potential for Xeon node

- 30 % power savings
- Interesting in phases of busy-waiting or memory-boundness

Hardware Power Saving Modes in HPC		
0000		

When to switch which component...

Performance/usage prediction

- Utilization based approach
- Instructions Per Second (IPS)
- Other performance counters (e.g. memory bandwidth)

Knowledge about future hardware use

- Application developer
- Compiler
- Libraries

	Power Mode Control System	
	•0	

Daemon architecture

	Power Mode Control System	
	00	

Daemon design

Server daemon

- Make decision about hardware power states
- Processor
 - Reduce frequency (P-States) using cpufreq
- Network card
 - Reduce speed / switch duplex mode using ethtool
- Harddisk
 - Reduce OS access and enforce standby modes using hdparm

Client library

- Linked to (MPI) application
- Forwards desired device power state via sockets to server

	Evaluation	
	00000	

Test MPI applications

partdiff-par

PDE solver

 Computation intensive phases, communication intensive phases and IO phases

PEPC

- Pretty Efficient Parallel Coulomb-solver
- Computation intensive phases and communication intensive phases

	Evaluation 000000	

Hardware

Details

- 3 × LMG 450 power meter
 - 4 channels each
 - up to 20 samples per second
- 5 × AMD Opteron 6168
 - Dual socket
 - 24 cores per node
- 5 × Intel Xeon X5560
 - Dual socket
 - 8 cores per node
 - SMT disabled

	Evaluation	
	000000	

Experimental setup

Application test setup

- **Instrumented**: State switching dependent on phase
- **CPU Max Freq**: Processor frequency set to maximum
- **CPU Min Freq**: Processor frequency set to minimum
- **CPU Ondemand**: Processor governor set to ondemand

Results

- **Time-to-Solution** (TTS): Total time for test setup
- Energy-to-Solution (ETS): Total energy for test setup

TTS and ETS for partdiff-par on Xeon nodes

5% savings in Energy-to-Solution
 Time-to-Solution increase of about 4%

Introduction	Hardware Power Saving Modes in HPC		Evaluation	Conclusion and Future Work
000	0000	00	000000	000

TTS and ETS for partdiff-par on Opteron nodes

8% energy savingsRuntime increase of 9%

	Evaluation 00000	

TTS and ETS for **PEPC** on Opteron nodes

7% energy savings, 4% runtime increase compared to
4% energy savings, 2% runtime increase

		Conclusion and Future Work

Conclusions

- Power consumption of idle nodes can be reduced by 11% and 18% respectively
- Power consumption can be decreased by more than 30% in phases with unnecessary high utilization (e.g. busy-waiting)
- Control device power states from userspace by introducing a hardware management daemon
- Reduce the Energy-to-Solution by up to 8% with an Time-to-Solution increase of about 9% for presented applications

		Conclusion and Future Work

Future work

- Identify energy saving possibilities (Scalasca enhancement)
- Benchmark to measure power consumption in various states
- Enhanced measurements with larger count of applications

		Conclusion and Future Work

CPU power saving potential (C-States enabled)

MHz