Simulation of Power Consumption of Energy Efficient Cluster Hardware EnA-HPC Conference 2010, Hamburg

Timo Minartz, Julian M. Kunkel, Thomas Ludwig

minartz@informatik.uni-hamburg.de

Scientific Computing Department of Informatics University of Hamburg

16-09-2010

Motivation

Why simulate what you can measure?

- Measurement devices with high accuracy are expensive
- Power meters are not easy to install into high-density racks
- Component-based measurement is not really possible with today's hardware
- Evaluation of different hard- and software characteristics possible
- Reproducible results

		Conclusions

- **1** Goals and methodology
- 2 Model
- 3 Model input values
- 4 Evaluation
- 5 Conclusions

Goals and methodology		Conclusions

Goals

- Estimate Energy-to-Solution (ETS) for given hard- and software
- Comparison of (simulated) energy consumption of the application with different power saving strategies
- Strategies can include rearrangements of the code
 - e.g. delay of network activity, I/O activities...
- Calculate minimal ETS with energy-proportional components
 - i.e. energy consumption is proportional to utilization
 - Upper bound for any energy saving strategy
- Integration in existing simulation environment PIOsimHD

Goals and methodology		Conclusions

Methodology

- Periodic tracing of utilization of components
 - Processor, memory, network and I/O-subsystems
- Replay trace file and estimate energy consumption
- Model considers future utilization and control energy saving mechanisms
- Comparison of the estimated and measured energy consumption
- Assessing power estimation for realistic program traces

Model		

2 Model

- 3 Model input values
- 4 Evaluation

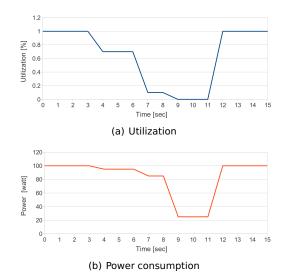
5 Conclusions

Goals and methodology	Model		
Model			

Approach

- Estimation of power consumption for each component for each timestep
- Linear interpolation of power consumption
 - Based on minimal and maximal consumption values
- If idle, activate energy saving mechanism with different look-ahead strategies
 - ACPI model for the energy consumption and duration of the component's state change

Goals and methodology	Model		
Model (2)			


Strategies

Simple Strategy

- Energy consumption without usage of explizit energy saving mechanism
- Optimal Strategy
 - Energy consumption with usage of low power state (0% utilization ⇒ low power state)
- Approach Strategy
 - Aggregate load to gain phases with zero utilization if possible
- Multiple State Strategy
 - Different power consumption for different utilization levels
 - e.g. P-states of the processor

Model		Conclusions

Example: Optimal Strategy

	Model input values	Conclusions

2 Model

- 3 Model input values
- 4 Evaluation

5 Conclusions

	Model input values	

Determining model input values

Component power consumption

- Modeled components:
 - CPU, memory, disk, NIC, power supply
- Implementation of a micro benchmark to utilize the components for about 100 %
- Disassembling of one node to get 0 % utilization power consumption
- Cross-reference with data sheets
- Approximate power consumption for each component can be calculated

Goals and methodology	Model input values	Conclusions

Cluster tracing environment

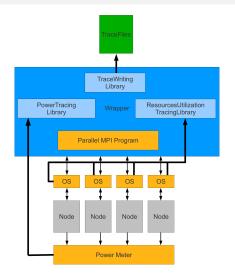


Figure: Cluster tracing environment

	Model input values	

Test environment

Hard- and software

- 4 nodes (not power aware)
 - Dual Socket XEON (2003)
 - 1 Gigabyte RAM
 - Gigabit Ethernet Network
 - NFS, PVFS2
 - Ubuntu 8.04

Each node connected to a channel of LMG 450 power meter

	Model input values	

Node power consumption

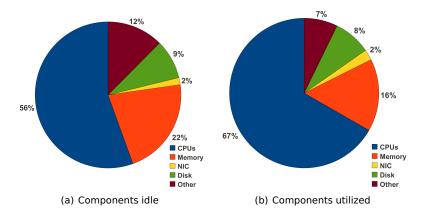


Figure: Distribution of power consumption (without power supply overhead)

	Model input values	

Sunshot screenshot

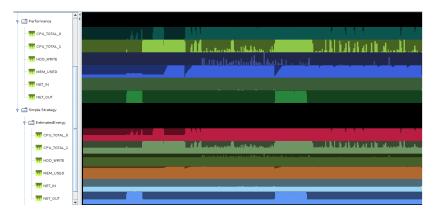


Figure: Component based utilization and estimated power consumption for the micro benchmark

	Evaluation	Conclusions

1 Goals and methodology

2 Model

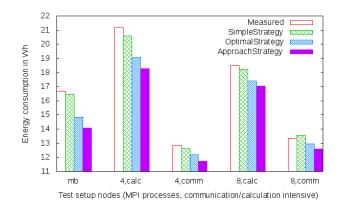
3 Model input values

4 Evaluation

Benchmark application

partdiff-par (PDE-Solver)

- Supports parallel I/O
- The computation to communication ratio is flexible based on the input values for the boundary values of the matrix
- The component utilization depends on the check pointing frequency and the computation to communication ratio
- **Partdiff-par** is a real application and no synthetic benchmark


	Evaluation	

Evaluation

Observations

- \blacksquare Deviance of simulated and measured ETS \leq 5 %
- Savings with different strategies (Optimal and Approach) at average about 10% and 13% respectively
- With energy proportional devices average savings of about 32 % possible

Goals and methodology		Evaluation	
Strategies			

Figure: Energy consumption of various traces with different strategies

Goals and methodology Model Model input values Evaluation Conclusions

Energy efficient sleeping

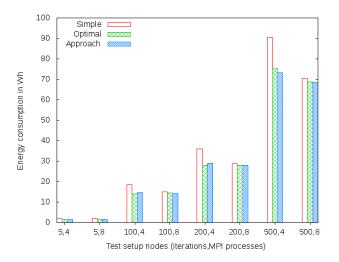


Figure: Comparison of four and eight calculating processors

Goals and methodology Model Model input values Evaluation Conclusions

Energy proportional devices

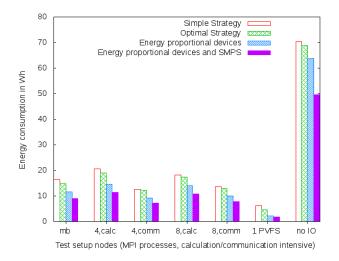


Figure: Energy consumption of energy proportional devices and SMPS

		Conclusions

1 Goals and methodology

2 Model

- 3 Model input values
- 4 Evaluation

		Conclusions

Conclusions

- Our prototype simulates power consumption and Energy-to-Solution with different hardware characteristics
- Different program configurations can be compared in terms of energy efficiency
- Monetary evaluation of hard- and software
- Payback period can be calculated
- Upper bound for power saving strategies can be determined

		Conclusions

Future work

- Trace usage of energy saving mechanism such as DVFS on our power-aware cluster
- Integrate ACPI power saving mechanism in the simulator inspired by the OS