
Tracing Internal Communication
in MPI and MPI-I/O

Julian M. Kunkel1, Yuichi Tsujita2, Olga Mordvinova3, Thomas Ludwig4

1 DKRZ, Hamburg
2 Kinki University, Hiroshima

3 Ruprecht-Karls-Universität, Heidelberg
4 Universität Hamburg, c/o DKRZ, Hamburg

PDCAT 2009

2/20Julian M. Kunkel

Outline

Introduction

PIOviz

Tracing MPI Internals

Evaluation

Collective Communication

MPI-I/O

Summary

Julian M. Kunkel 3/20

Introduction

Users rely on efficient MPI implementation

HPC environment is complex

Network topology

Node hardware

Parallel file system

MPI abstracts from environment

Implementations tend to work in multiple environments

Might deliver suboptimal performance

Julian M. Kunkel 4/20

Why is Tracing MPI-Internals Useful?

Users want to

Assess MPI performance

Optimize MPI

Make sure HPC environment is healthy

Internal processing in MPI depends on application

=> application context is important!

Understanding processing might improve load balancing

Julian M. Kunkel 5/20

PIOviz

 Tracing environment for

MPI applications

Server side file system specific information

Visualize file system clients and servers together

 Software components:
MPICH2

PVFS v2

Postprocessing scripts

Extensions to MPE and Jumpshot

Julian M. Kunkel 6/20

Tracing with PIOviz

 Trace MPI clients with MPE

 Trace PVFS servers with MPE

 Postprocess with slog2tools (excerpt):
Merge client and server trace files

Correlate client and server activities

 Visualize postprocessed trace with Jumpshot

New in PIOviz

MPI

P
V

F
S

C

lie
nt

M
P

E

MPI
P

V
F

S

C
lie

nt

M
P

E ...

MPI

P
V

F
S

C

lie
nt

M
P

E

 P
V

F
S

S

er
ve

r

M
P

E

Network

 P
V

F
S

S

er
ve

r

M
P

E

 P
V

F
S

S

er
ve

r

M
P

E
... CLOG2

Trace

CLOG2
Trace

SLOG2
Trace

SLOG2
Trace

slog2tools
from PIOviz

SLOG2
Trace Jumpshot

Julian M. Kunkel 7/20

Tracing MPI Internals

Modified MPI-I/O calls to use MPI_X calls internally

Before PMPI calls were used

Instrumented PVFS calls inside MPI-I/O layer

Instrumented internal functions for collective calls

Used by collective functions for communication

=> Internal processing of collective functions is traced

8/20Julian M. Kunkel

Evaluation

Julian M. Kunkel 9/20

Allreduce

Experiment

Sum 10 million double values (80 Mbyte)

10 times repeated

We expect t(#p) <= t(#p+1)

But slower for process # which are not a power of two!

Observed time for Allreduce

Processes (#p)

Julian M. Kunkel 10/20

Inside Allreduce

 4 processes: Binary tree algorithm (all to all)

3 processes: First process delays processing

Julian M. Kunkel 11/20

Concluding Allreduce

 Efficient algorithm for allreduce was described

 But not completely implemented!

 => Performance degredation if #p != 2^x

 => As efficient as 4 times the number of processes

Instead of t ~ (⌈log
2
(#p)⌉) we get t~(⌈log

2
(#p)⌉+2)

and load imbalance!

 (This is just an approximation)

Julian M. Kunkel 12/20

Inside Scatter

Scatter 1->9 Clients

8 Mbyte of data

Processes forward data

Critical in a switched network topology (except for small msgs)

All processes (except one) finish at the same time

Julian M. Kunkel 13/20

Inside Gather

Gather 9 -> 1 client

 8 Mbyte of data

Again forwarding of data

Load imbalance due to call

Nice to put less work on „forwarders“

14/20Julian M. Kunkel

MPI-I/O

Julian M. Kunkel 15/20

Tracing without PIOviz

We cannot assess performance of File_write_all

Julian M. Kunkel 16/20

Tracing Client Internals

How performant are the PVFS servers?

Julian M. Kunkel 17/20

PIOviz without Client Internals

Where is the performance bottleneck?

Long idle phase (0.2 s)

Julian M. Kunkel 18/20

PIOviz with Client Internals

One client needs a long time to finish PVFS_sys_read

 => Bug inside PVFS Client Library

19/20Julian M. Kunkel

Conclusions

Tuning of MPI libraries is important

We trace application, server and MPI internals

Revealed suboptimal handling of collective calls

Combined trace for parallel file system client
and server allows

to localize bottlenecks

to tune internal layers

20/20Julian M. Kunkel

Thank you for your attention!

かんしゃ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

