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Introduction

Users rely on efficient MPI implementation

HPC environment is complex

Network topology

Node hardware

Parallel file system

MPI abstracts from environment

Implementations tend to work in multiple environments

Might deliver suboptimal performance
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Why is Tracing MPI-Internals Useful?

Users want to

Assess MPI performance

Optimize MPI

Make sure HPC environment is healthy

Internal processing in MPI depends on application 

=> application context is important!

Understanding processing might improve load balancing
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PIOviz

 Tracing environment for

MPI applications

Server side file system specific information

Visualize file system clients and servers together

 Software components:
MPICH2

PVFS v2

Postprocessing scripts

Extensions to MPE and Jumpshot
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Tracing with PIOviz

 Trace MPI clients with MPE

 Trace PVFS servers with MPE

 Postprocess with slog2tools (excerpt):
Merge client and server trace files

Correlate client and server activities

 Visualize postprocessed trace with Jumpshot

New in PIOviz
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Tracing MPI Internals

Modified MPI-I/O calls to use MPI_X calls  internally

Before PMPI calls were used

Instrumented PVFS calls inside MPI-I/O layer

Instrumented internal functions for collective calls

Used by collective functions for communication

=> Internal processing of collective functions is traced
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Evaluation
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Allreduce

Experiment

Sum 10 million double values (80 Mbyte)

10 times repeated

We expect t(#p) <= t(#p+1)

But slower for process # which are not a power of two!

Observed time for Allreduce

# Processes (#p)
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Inside Allreduce

 4 processes: Binary tree algorithm (all to all)

3 processes: First process delays processing 
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Concluding Allreduce

 Efficient algorithm for allreduce was described

 But not completely implemented!

   => Performance degredation if #p != 2^x

   => As efficient as 4 times the number of  processes

Instead of t ~ (⌈log
2
(#p)⌉) we get t~(⌈log

2
(#p)⌉+2) 

and load imbalance! 

       (This is just an approximation)
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Inside Scatter

Scatter 1->9 Clients

8 Mbyte of data

Processes forward data

Critical in a switched network topology (except for small msgs)

All processes (except one) finish at the same time
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Inside Gather

Gather 9 -> 1 client

 8 Mbyte of data

Again forwarding of data

Load imbalance due to call

Nice to put less work on „forwarders“
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MPI-I/O



Julian M. Kunkel 15/20

Tracing without PIOviz

We cannot assess performance of File_write_all
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Tracing Client Internals

How performant are the PVFS servers?
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PIOviz without Client Internals

Where is the performance bottleneck?

Long idle phase (0.2 s)
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PIOviz with Client Internals

One client needs a long time to finish PVFS_sys_read

    => Bug inside PVFS Client Library
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Conclusions

Tuning of MPI libraries is important

We trace application, server and MPI internals

Revealed suboptimal handling of collective calls

Combined trace for parallel file system client 
and server allows

to localize bottlenecks

to tune internal layers
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Thank you for your attention!

かんしゃ
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