Introduction 000	System overview	Performance Metrics and Statistics	Evaluation 00000000000000	Summary O

Bottleneck Detection in Parallel File Systems with Trace-Based Performance Monitoring

Julian M. Kunkel Thomas Ludwig

Institute for Computer Science Parallel and Distributed Systems Ruprecht-Karls-Universität Heidelberg

Euro-Par 2008

đ

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000		00000000000000	O
Outline				

- 2 System overview
- 3 Performance Metrics and Statistics
- 4 Evaluation

đ

500

l

ъ

Introduction	System overview 0000	Performance Metrics and Statistics	Evaluation 00000000000000	Summary O
Outline				

- 2 System overview
- **3** Performance Metrics and Statistics

4 Evaluation

5 Summary

đ

9 Q (?

l

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
●00	0000		0000000000000	O
Motivatio	n			

- A parallel file system should utilize all resources
 - Existing distributed/parallel file systems distribute data/metadata
 - Load imbalance leads to degraded performance
- \bullet Several factors lead to variation in I/O performance
 - Hardware capability
 - Access pattern of clients
 - Degraded RAID-Arrays
 - Efficiency of optimizations could vary
 - Throughput of a component could depend on the order of requests

đ

5900

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
0●0	0000		00000000000000	O
Questions	Regarding L	oad Imbalance		

- How could the system or users detect load imbalance?
- Which hardware/software causes the load imbalance?
- Is the application's access pattern the reason of the load imbalance?
- How will the user figure out the application behavior leading to imbalance?

5900

đ

Introduction 00●	System overview 0000	Performance Metrics and Statistics	Evaluation 0000000000000	Summary O
Preconditic	n			
It is import	ant to monitor t	he systems behavior		
Duranaala	alution			
Proposed s	olution			
 Integra 	ate meaningful n	netrics into the parallel file	system	
 Allow 	to query these n	netrics online		
 Visual applica 	ize the metrics fo ation	or the users and relate the	behavior with th	ie

Long-term goal

Maybe the user can modify the code to increase efficiency of the system:

- Access pattern
- Data layout on the servers
- Give hints to the file system

Maybe the file system can rebalance access

Introduction 000	System overview	Performance Metrics and Statistics	Evaluation 00000000000000	Summary O
Outline				

2 System overview

3 Performance Metrics and Statistics

4 Evaluation

5 Summary

đ

l

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summa
	0000			

PVFS-Server Architecture

Description of the layers/components

• Main

- Accepts new requests
- Contains/processes statemachines
- Scheduler allows concurrent access of non-interfering requests
- Performance monitor
 - Orthogonal layer
 - Stores statistics of internal layers
 - Can be queried remotely
 - Updated in fixed intervals
 - Keeps a history of the statistics

Used Software Environment

Introduction 000	System overview	Performance Metrics and Statistics	Evaluation 000000000000000	Summary O
PIOviz				

Attempt to visualize client and server activities together

- Developed at the University of Heidelberg
- Uses MPE to generate client and server traces
- Add unique ID to PVFS requests in ROMIO
- Provides tools to work on these trace files:
 - Merge
 - Adjust time
 - Correlate client and server activities
- Modifications on Jumpshot:
 - Provide more details on events
 - Allow heights of states proportional to value

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000		00000000000000	O
Outline				

2 System overview

3 Performance Metrics and Statistics

4 Evaluation

5 Summary

ð

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000		●○○○○	000000000000000	O

Problem

It is not easy to define meaningful metrics!

ð

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000	○●○○○	0000000000000	O
"Absolute	" metrics			

- Measure observable usage or performance
 - e.g. throughput of network or disk,
 - Processed requests (of a given type),
 - Number of bytes read/written
 - ...
- Is a value of 50 MiB/s a high value for network throughput?
 - One could relate the value with the maximum network throughput
 - Good value of a server if clients access data only half the time
 - Bad value if the server does not manage to process all requests
 - Is there a congestion in network?
 - Are servers not utilized by client requests?

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000		0000000000000	O
Relative n	netrics			

- Relate usage/performance with actual demand
 - Idle time of a component in percent within an interval
 - $\bullet \ \gg 0$ % Wasted processing capability
 - $\bullet~$ 0 % Does the component benefit from concurrent operations?
 - Average number of pending jobs within an interval (load-index)
 - The more complex a job the longer it is processed
 - The faster a component operates the shorter the queue
 - e.g. Linux Kernel 60 second system-load
 - e.g. drive queue depth
 - Does the component share its ressources among pending operations?
 - Is only a subset of operations serviced at a given time?
 - What if a set of long running jobs is serviced prior short jobs?
 - ...

Expected behavior of a load-index

- Load should be accurate for long-running jobs
- Load average over longer periods should be accurate (even if there are short jobs)

Julian M. Kunkel - Euro-Par 2008

Introduction 000	System overview	Performance Metrics and Statistics	Evaluation 00000000000000	Summary O
Added Sta	tistics (1)			

- We added plenty of new statistics to PVFS
- Relation of several statistics could reveal the component causing imbalance

Internal PVFS Statistics

- Request average-load-index
- Flow average-load-index
- I/O subsystem average-load-index
- I/O subsystem idle-time [percent]
- Network average-load-index

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000	○○○○●	0000000000000	O
Added Sta	atistics/Met	rics (2)		

Kernel Statistics

- Average kernel load for one minute
- Memory used for I/O caches [Bytes]
- CPU usage [percent]
- Data received from the network [Bytes]
- Data send to the network [Bytes]
- Data read from the I/O subsystem [Bytes]
- Data written by the I/O subsystem [Bytes]

5900

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000		000000000000000000000000000000000000	O
Outline				

- 2 System overview
- **3** Performance Metrics and Statistics

4 Evaluation

5 Summary

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000		•••••••	O
Test Envir	onment			

- 10 node cluster each node equipped with:
 - Two Intel Xeon 2GHz CPUs
 - 1000 MiB memory
 - 1000-MBit-Ethernet (throughput: 117 MiB/sec)
 - IBM Hard disk (sequential throughput: pprox 45 MiB/sec)
 - RAID Controller with two disks (\approx 90 MiB/sec)
- Test program
 - Allows to select a level of access ((non-)contig., (non-)collective)
 - Clients write a fixed amount of data
 - Barrier
 - Clients read (their) data
- Disjoint clients and server partition
- Five clients, one metadata server and three data servers

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary					
000	0000		•••••••	O					
Experiments									

- Independent contiguous I/O (each client accesses 200×10 MiB)
- Collective, non-contiguous I/O (each client accesses 4 × 500 MiB)
 - $\bullet\,$ Note: Size of ROMIO's collective I/O buffer is 4 MiB
- Both cases measured also on an inhomogeneous I/O subsystem
 - One server uses its system disk and not the RAID system

5900

000 0000 00000 00 0 0000000000000000000	Summary

Collective, non-contiguous ${\rm I}/{\rm O}$ with homogeneous hardware

ð

ъ

Clients											
Request Load	3.4 3.4 3.4				s. 						
Trove idle [%]		6	6% 6%			50%		n an an Anna An Anna Anna Anna Anna Anna			
Bytes written [MB/s]	58 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ىلىسانىكى مىشىد. 14 يەر بەر يەر يارىرىر	مته بال تامنان مميان انشياء استناعين	kad shosada ke k aadaaad ahada		50%					
Bytes read [[MB/s]]							ing particular at particular here provide		19 19 19	251	
τ[s]	.,00 25	,00 50,0	0 75,00	100,00	125,00	150,00	175,00	200,00	225,00	250,00	275,00

000 0000 0000 0000 0 0000 0	Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
				000000000000000000000000000000000000000	

Collective, non-contiguous ${\rm I}/{\rm O}$ with inhomogeneous hardware

7 2

Introduction 000	System overview 0000	Performance Metrics and Statistics	Evaluation	Summary 0

Independent, contiguous I/O

ð

9 Q (?

E

000 000000000 0000 000 000 000 000 000	Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
				000000000000000000000000000000000000000	

Independent, contiguous ${\rm I}/{\rm O}$ with inhomogeneous hardware

ð

ъ

E

Introduction 000	System overview 0000			Performance Metrics and Statistics					Evaluation Sum			
		Request load			BMI load			Trove load			Trove idleness [%	
ind. contig. (Ivl. 0)	7.8	5.1	5.5	2.1	2.1	2.1	36.7	17.9	20.6	5.4	9.7	9.8
ind. coll. (Ivl. 1)	5.1	5	5.1	1.7	1.7	1.7	9.2	9	9.2	26.9	27.6	27.3
noncont (Ivl. 2)	8.7	8.8	8.2	2.2	2.3	2.2	54.4	54.9	49.9	3.4	2.1	4.4
noncont. coll (Ivl. 3)	2.9	3	2.9	1.2	1.2	1.2	4.4	4.8	4.6	56.7	54	56.3
level 0-inh. I/O	8.4	2.3	2.2	1.2	1.3	1.3	44.1	5	4.6	2.6	40.6	42.1
level 1-inh. I/O	5.8	3.5	3.6	1.2	1.3	1.3	11.9	6	6.2	10.1	49.5	49.2
level 2-inh. I/O	9.2	4.1	4.1	2.6	1.1	1.1	65.2	25.6	25	1.6	39.1	39.8
level 3-inh. I/O	3.5	2.3	2.3	0.9	1	0.9	7.2	3.5	3.5	40.4	63.7	64.3

ъ

Introduction	System overview	Performance Metrics and Statistics	Evaluation	Summary
000	0000		00000000000000	O
Outline				

- 2 System overview
- **3** Performance Metrics and Statistics

4 Evaluation

5 Summary

Introduction 000	System overview	Performance Metrics and Statistics	Evaluation 00000000000000	Summary ●
Summary				

- It is important to monitor component's performance
 - Relative metrics allow to assess demand with delivered performance
- Introduced an environment which allows to relate server statistics with (MPI) client activities
- Traces could assist the user to detect inefficient MPI-I/O calls and potential reasons
- Relation of several metrics allows to localize the component causing the load imbalance
- More work is needed to assess observed behavior