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Abstract

Writing scientific code usually implies the need to coordinate and conflate the contributions of several scientific programmers.
Using Git hosting services eases this process, because the hosting services offer many features, which assist in collaborated work
on code. The well-established hosting service GitHub has seen continuous growth in terms of number of users, repositories and
commits over the last few years; therefore it offers a large data source of scientific codes as well as social interaction of associated
scientific programmers.

We present a tool, which allows to easily search through relevant GitHub repositories and perform more advanced analyses,
which cannot be conducted solely with the GitHub API. Our tool combines benefits from online as well as offline approaches to
retrieve and analyse data to optimise time of execution and consumption of storage.

We discuss possible use cases and demonstrate the tool’s capabilities by investigating the popularity of OpenMP directives in
the scientific community.
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1. Motivation and Background

Developing scientific software is usually a process, which never really ends: new scientific methods are developed
and integrated into the application, new developers join the team to add their expertise on their field of work or the
application simply needs to be ported to the next generation of computer architecture. Domain experts across institutes
and even across countries collaborate on the same topic and contribute to the same code base. Git hosting services
provide a great technical platform for development, maintaining and publishing software to support those developers.
They allow the developers to easily release updates to their software, get feedback from their community and publish
it under an appropriate license.
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Looking at different software projects can provide a very helpful insight of how people use or don’t use certain
functionality or libraries. Especially when developing service or middleware libraries, one should keep track of how
the “customers” make use of the provided features. This can influence how developers continue their work on such
libraries, strategical decisions can depend on the behavior of the user community. If the users put their code on the
same hosting service as well, this allows to deduce new insights, since all interactions are reflected on this service.

GitHub is a well-established internet hosting service for Git repositories, with over 293 million repositories (public
and private) [1] and more than 73 million users. 84% of Fortune100 companies make use of a paid subscription
of GitHub (GitHub Enterprise) [2]. While becoming common in industrial software development, the integration of
scientific projects on GitHub is not natural though. Research like [3] shows the growing relevance of GitHub. But it
is not the only platform, there are other services as well like GitLab or SourceForge. We focus on GitHub for now,
because it is the most popular one and promises a great gain in knowledge [4], but we will keep an eye on other
platforms too. Furthermore, we take care of applications, which are not hosted anywhere public (for reasons of license
or lack of maintenance) as we provide a way to embed offline code bases.

In this paper, we introduce a tool, which allows the user to automatically execute a customised search for specific
(code) phrases in a wide range of software projects on GitHub and perform relevant evaluations on those findings.
Since there are so many publicly available repositories, which are widely distributed amongst many topics, this gives
us a good opportunity to gain a generally valid view on applications. There are several use cases, which can be
easily answered for individual repositories by simply manually evaluating them, but this is not feasible anymore if
fundamental statements for many more repositories with the same background shall be made. Our tool automatises
the data collection and primal evaluation so that the user can focus on the interpretation of the generated results.

2. Related Work

To apply methods of data science on a large data source like GitHub, support through tools is needed to find,
retrieve and handle the amount of relevant data. There are many tools available, which ease the collection and analysis
of repositories from GitHub. There are two different ways to perform research on GitHub (meta-)data:

offline The GitHub data is completely/partially downloaded and searches and analyses are performed locally.

online A request is generated and used to retrieve data from GitHub itself: Generally links to repositories, which
fulfil the request, and their metadata (but not the data within the repository itself) are returned. The request can
be submitted by using the official GitHub APIs (REST [5] and GraphQL [6]) or the more specialised GitHub
Code Search API [7]. Alternatively a webcrawler could be used.

2.1. Offline

Instead of searching through GitHub repositories on the fly via its API one can also make use of archives, which
provide a complete mirror of GitHub. Two notable examples are GHTorrent [8] and GH Archive1. This allows to
perform offline analyses on the whole dataset without the restrictions through network and API request limits. But
there are several drawbacks to this approach:

1. You have to download the complete dump even if you are just interested in a small part of the data. Currently,
in case of GHTorrent this would be about 102 GB solely for metadata; the database, which holds the real data
itself is larger than 18 TB [9]. Since both archives are also accessible via Google BigQuery, this problem can be
avoided; however Google BigQuery offers only a limited subset of features for free use [10]. There have been
done improvements to allow users to customise the content of the dump, before it is downloaded, but the creation
could take a long time (up to a magnitude of several days) or lead to incomplete data [11].

2. Depending on how you access the archive data, you retrieve a full or partial data dump only at discretised
timesteps.

1 https://www.gharchive.org/
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3. The archived data might be outdated, while getting recent data entails additional efforts in form of authentication
steps or versions diff-processing.

2.2. Online

To circumvent the drawbacks of the offline search an online approach via the GitHub API or a webcrawler can
be used. A webcrawler can be used to perform a so-called focused crawling, to retrieve only relevant data from a
target website [12]. Such a tool has been proposed by [13], which collects repositories. However, there are several
substantial disadvantages to use a webcrawler:

• They rely on a certain layout of the website or the URL, which could change over time.
• If the website has a bot check the webcrawler needs to imitate human behaviour to avoid being (soft)

blocked [14].
• The legal aspects of using webcrawlers are still quite controversially discussed [15].

A more robust and with respect to legal aspects better approach is to use the official API, which is provided by
GitHub. Constructing and tuning the requests to this API allows to narrow down the volume of the data, which will
be requested and then analysed locally. Aside from that using the requests guarantees that always the freshest data
will be retrieved, there is no need to update a complete dump with consecutive partial dumps. In fact, it would be
optimal to perform the analyse online as well e.g. by using Google BigQuery, but because of its pricing model this is
no generally valid alternative.

There are some tools available, which do not only submit general requests via the GitHub API but also allow to
reduce and optimise the amount of found repositories by setting user-defined filters [16, 17]. They allow to preselect
repositories by setting limits, which they need to fulfil and focus on the repositories’ metadata like dates, number of
commits, stars, etc. In comparison our tool significantly extends the possible user-set limits and introduces on top of
that much more complex analyses (e.g. intersections of multiple search requests).

Another example for a tool, which performs a more complex online analysis is AUSearch [18]. It allows the user to
look for code examples of a specific Java API. The tool uses the GitHub Code Search API to find corresponding Java
source files, processes them and gathers additional information from the Maven Package Search API, to present usage
examples to the user in the end. But since this tool is tailored closely to the Java use case and we have more general
purpose use cases in mind, this tool does not fit our needs.

Our tool combines an online and offline approach to utilise the advantages of both worlds while reducing their
negative impact. We perform a preselection of repositories by generating a fine-granular request, which we submit
to the GitHub API. But unlike the aforementioned tools our framework is not limited to metadata filters or a specific
language but considers the repository content in general: The returned repositories are cloned to a local disk, where
then our in-depth searches and analyses are performed. In addition our framework utilises a caching mechanism.
Assuming that a user performs several requests, which could be correlated to each other (because they are interested
in a specific topic for example), we suppose that successive user searches hit some repositories several times. Storing
some results selectively in a local database allows to speed up following user searches. The advantage of this approach
is that our framework does not need to download a large dataset but limits the storage requirements on relevant
findings.

3. Use Cases

In this section we describe a few of the wide variety of use cases for our framework. Like other tools, which have
already been presented to some extent in section 2, our tool incorporates a module to fetch data from the official
GitHub API. But since we integrate a more advanced analysis component, we can perform more complex analyses.
To demonstrate the capabilities of the tool we will present two use cases. In section 5 we will show results of the
first use case (composition of OpenMP usage) in further detail, though the latter use cases will just be outlined and
evaluated in a follow-up publication.
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3.1. Use Case I: Popularity of an API

At first we address the question how frequently a specific library feature or functionality is used in real world appli-
cations. The outcome could affect the further project development and design if specific functionality is unexpectedly
unused. As soon as the project developer gets notice of such an imbalance they can take measures against it. They
could improve the documentation of neglected features or offer additional tutorials or examples to make users more
familiar with such features. Even more radical measures like changes to the API could be conceivable. But whatever
measures are taken the first important step is to take notice that there is a need for action.

Knowing such an imbalance can also be taken advantage of:

• If developers try to improve the code base they could for example focus first on the most popular constructs to
achieve maximal improvement regarding their invested working hours.
• If a tool is constructed, which shall perform its actions on specific API constructs; then it’s much more beneficial

to start with the most popular constructs, to achieve extensive first results quickly.

We will use OpenMP [19] as an example for this use case. It offers an API, which is supported by most established
compilers, and offers functions and compiler directives to utilise threads on shared memory architecture. In compari-
son with other thread APIs like for example POSIX Threads or Intel’s Threading Building Blocks, it is quite easy to
use and only requires minimal code changes. Therefore in HPC it is very often used for parallelisation using threads.

Using our tool allows to automatically iterate fitting repositories and to search within each repository for used
compiler directives. The results (cf. section 5) can then be used to estimate if a new feature of OpenMP has already
been well adapted by the community or if (probably after many years) still additional efforts at persuasion are needed.
Developers of tools, which optimise code, if specific (OpenMP) constructs are used, can also benefit from this infor-
mation. Such an example is CATO [20], which performs automatic replacements based on found OpenMP directives.
Implementing new replacement patterns in CATO should focus on the most popular directives, first. As a result, the
new replacement pattern can be applied onto many applications using OpenMP in a timely manner. Otherwise - with-
out any knowledge of the directives’ popularity - the selection of which OpenMP directive should be considered first
would be more fuzzy and it would take more time to reach the same level of consideration.

3.2. Use Case II:

When developing system components for specific usage, it often lacks for sample applications to benchmark the
own work. Developers often use only a few applications they are familiar with, which could cast doubt on the mean-
ingfulness of the limited results. With our tool we can simply create a pool of appropriate applications.

One of our related project deals with file system compression. To compare the feature performance, it is insufficient
to use synthetic I/O benchmarks, even if they support compression techniques, since the performance very much
depends on the I/O patterns and the computation load of the application. A pool of real world scientific applications
using specific data formats like HDF5 or netCDF which allow for compression is required for extended studies.

Additional valuable outcome provides the overview whether scientific applications use compression at all, because
they often do not. Status quo studies with our tool can help to argue for the new compression feature, which would not
require any application-side code, and also help to find the reasons why the applications do not use it. For example,
to allow compression, HDF5 requires specific properties to be set (like H5FD_MPIO_COLLECTIVE_IO) and has limitations
on data transformations for parallel writes when using compression. If most of the applications appear to perform
these transformations, they cannot benefit from middleware compression and have no other option than file system
compression. The remaining ones could be used for comparison which feature performs better.

Middleware libraries like HDF5 and netCDF are dominant in oceanographic and meteorologic fields, while other
fields like astrophysics and bio-informatics have their own formats. Due to a lack of well maintained documenta-
tion, it is very hard to find out whether they use compression features. Code investigations for specific keywords or
compression algorithms acronyms can simplify the search.

Developers of middleware, on the other hand, can also benefit from these findings and take the insights as an op-
portunity for improvements on their software. It can be interesting for strategical decisions to see whether deprecated
functions are still widely used, or in opposite, new features remain unused.
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Fig. 1. Component overview and work flow of our tool

4. Tool Design

Our tool consists of several components, which handle the collection of repositories, execute search queries and
perform user-defined analyses on the repositories’ content. We have already discussed in section 2 online and offline
approaches to work on GitHub data. Our tool combines both aspects: We use an online approach to iterate through
GitHub to preselect a set of repositories and then perform an offline analysis, which could not be (easily) done with
an online approach only. The interaction of the tool’s components can be seen in fig. 1 and we will discuss the most
important ones:

1. GitHub queries
2. Repository queries
3. Repository analysis
4. Database

The tool’s code is publicly available under an open source license on GitHub [21].

4.1. Step 1: Search through GitHub

The first component is concerned solely with constructing and sending the necessary requests. We use the official
GitHub API to perform an online search through GitHub’s hosted public repositories. GitHub offers two different
APIs: REST and GraphQL. We have decided to integrate the REST API first, because it is a well-established paradigm
and offers about the same features like the GraphQL API.

When the user executes our tool they may provide a config file with additional attributes, which will be used as
a filter in the REST requests. This allows the user to define boundary conditions on the metadata of the repositories
so that only repositories are returned, which meet the user’s requirements. They can for example limit the search to
repositories, which fulfil technical requirements like a specific topic or primary language. But also social limits can
be set like the minimal number of forks, stars or the date of the last commit. The configuration files are kept simple,
each line is an individual statement, which is interpreted by our tool. Listing 1 and listing 2 show simple examples of
both configuration files, which the user can pass to the tool.

1 keyword: openmp

2 stars: >10

3 pushed: 2018 -01 -01..2022 -01 -01

4

Listing 1. User-defined configuration file for preselection

1 pragma omp barrier

2 pragma omp parallel for

3 pragma omp task

4

Listing 2. User-defined expressions for search step
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The first one regulates the preselection step: In this example only repositories are considered, which conform to
the keyword, the least number of stars and the time of the last commit. This is not only important to limit the result
set to repositories, which fit to the user’s search intent but also to perform some kind of preselection. Repositories
can suffer from several impairments, which degrades their benefit for the user. For example, depending on the user’s
intentions it could be useful to exclude repositories, which have not been updated for a very long time (content might
be outdated) or have only few stars or contributors (the majority of repositories on GitHub are personal and might
be of no interest) [4]. All limits are taken into account, when the tool generates and submits the REST requests. The
result of this request consists of a list of repositories, which fulfil all set conditions.

After the repositories have been selected, the analysis is conducted by the next component. In this case the second
configuration file contains a simple list of OpenMP directives, which are searched within each repository; the result is
then saved to the database.

4.2. Step 2: Analyse single repository

There are already many tools, which allow to search through GitHub repositories and define limits regarding the
repositories’ metadata. Our tool allows a more advanced search by performing in addition a consecutive search on
each single repository, which has been found by the previous REST request.

This is where the offline approach of our tool comes into play. The tool temporarily downloads each repository
to disk by performing a shallow clone by using a history depth of one, since we are only interested in the current
state. Omitting the dispensable Git history saves storage and time. Since the files can now be accessed directly more
complex searches and analyses are possible, because the official GitHub APIs are quite limited to filtering based on
metadata but not files’ content. Currently we have integrated the possibility to search for specific strings or regular
expressions within all files, which already offers a large variety of possible search queries. To get an impression what
kind of advanced use cases are now possible, we list a few notable ones in section 3.

GitHub provides another API for code searching, without the need of downloading or cloning the code base.
However, it has a number of limitations in usage [7] and is currently not available for everyone (as per April 2022).
These can be very helpful to prevent escalation in automated processes: Only repositories with less than 500,000 files
are searchable or only the default branch is indexed for code search. Some other restrictions on the other hand can
be obstructive: A lot of wildcard characters (punctuation marks, brackets) are not allowed to be part of the search.
Additionally, the results will include at most only two fragments of a file where the searched term has occurred. This
is why we currently refrain from using the code search API.

4.3. Improvements

Since downloading and storing all repositories, which have been selected for advanced analysis, would quickly
require a lot of capacity, the cloned data is only stored temporarily. As soon as the analysis has been conducted, the
local repository is removed again. This saves disk storage but leads to the disadvantage that all repositories have to
be downloaded every time they are selected in the initial GitHub search. Even if only a slight variation regarding the
search configuration shall be performed, which would again select repositories from a prior search, everything would
have to be downloaded again.

Therefore we extended our offline approach by integrating a database as a local cache. Since we expect to store
data, which can be quite diverse, since many versatile search queries can be thought of, we decided to use a document
store database and picked therefore MongoDB2. Significant metadata of all selected repositories are stored in it as
well as results of performed analysis (e.g. all found OpenMP directives from the use case described in section 3.1).
For example, storing the date of the last commit allows to define a time duration, after which the locally stored data
within the database is automatically invalidated so that the next time, when this repository is selected, it’s cloned
again and the stored data within the database is updated accordingly. Storing search results in the database allows
also to re-evaluate prior search results with no need to download repositories again, which have already been found
and analysed. The user is also able to influence the collection in which the queried data is supposed to be stored in

2 https://www.mongodb.com/
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via arguments passed to the tool. Being able to provide this feature is another advantage of using a document store
database compared to other possibilities, like relational databases, as the added flexibility enables users to structure
their queried data more liberally. With these options, the construction of a vast, up-to-date and usable database is well
supported.

Even more complex analyses are now possible, where data is required, which cannot be retrieved in a single search.
One example would be to search for repositories, which make use of parallel I/O but do not enable compression even
if it would be applicable. This is a crucial pattern, because parallel I/O without compression can lead to inefficient
performance. Using only the negated corresponding keyword via GitHub search to check for abundance of compres-
sion is not reliable: Programers could use compression without stating this neither in readme.md nor in the topics. To
rely on the keyword on this case would lead to a lot of false negatives and to avoid this the code has to be searched
directly, which our tool is capable of.

5. Results
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Fig. 2. Share of analyzed repositories that utilize OpenMP
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Fig. 3. Distribution of OpenMP pragmas after filtering

To demonstrate the capabilities of our tool, we evaluate the first use case, which we have presented in section 3.1:
We check how many repositories make use of OpenMP threads to optimise their application performance-wise. It
took about four hours in total and during this process about 6100 repositories have been cloned and analysed locally.
The runtime is put together roughly as follows: Constructing the search queries, sending them to the REST API and
processing initial metadata takes less than 30 minutes, the rest of the runtime is spent cloning the repositories. The time
to search through each repository for the specified queries, which consisted of more than 60 directives, is miniscule
and can therefore be neglected.

The outcome can then be used as a data basis for several questions; we will have a look on two:

1. Which OpenMP directives are the most popular ones?
2. Has the task directive already been widely accepted by the community?

The answer of the first question can be of interest for tool developers (which directives should be focused on) but
also users, who want to start learning OpenMP by knowing which popular feature should be looked at first. In addition
you get also a list of repositories, which make use of those directives and can be looked at, if an example of use is
required.

The second question could be of interest for tutors, who teach OpenMP. Many trivial parallelisation approaches
simply use #pragma omp parallel for to parallelise the execution of a loop. Tasks have been an important addition
to OpenMP and have already been added with version 3.0 in 2008 [22]. Some even say that new beginners should
start to learn tasks and only afterwards parallel loop constructs. Evaluating the second question would then allow an
estimation, if additional teaching is required or the directive needs to be pushed more.

At first a set of repositories is created, which is preselected based on metadata. The second step is then the analysis,
which OpenMP directives have been used in each repository. We performed a search for the keyword openmp and
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limited the result set to repositories with at least two stars, whose primary language is C/C++ and which have been
pushed to after 01.01.2020. About 10 % of all found repos did not contain OpenMP directives (cf. fig. 2). The reason
for this is that the keyword search evaluates three characteristics:

• The name of the repository
• The topics
• The content of the readme.md

If in one of these places the keyword is matched, the repository is added to the result set. But since GitHub also
evaluates hits on substrings as true, there are also some false positive results. For example the keyword openmp is
also found in the name of the repositories for OpenMPI3 and OpenMPT4. Our analysis step afterwards, which looks
for OpenMP directives, improves therefore the data quality further by eliminating some false positives. The more
interesting result is shown in fig. 3, which shows the distribution of used directives in all repositories, which have
been found and use OpenMP. It becomes quite clear, that parallel and parallel for are predominant directives. The
task directive comes only in the fith place.

This could draw the following conclusions:

• The task directive needs to be promoted more to reach a critical size.
• CATO’s developers (cf. section 3.1) should at first focus on parallel and parallel for instead of task, if they

want to reach compatiblity with more codes on GitHub faster.

6. Conclusion and Future Work

We gave a summary of why it can be beneficial to users and developers of tools or libraries to apply data science
techniques on (meta-)data from GitHub repositories. Our tool allows to easily search through many GitHub reposito-
ries and execute more in-depth analyses, which in combination can result in much more complex results. Many use
cases can be investigated, ranging from technical applications (e.g. “Which repositories use a specific library/func-
tion/language?”) to more abstract questions (e.g. “How many repositories make use of compression in general?”).
We have demonstrated this on the basis of the OpenMP use case.

But, there are still some aspects, which we are still working on to improve the tool performance and range of its
features.

6.1. New Features

Detecting transitive relationships is a challenging task and currently only possible to a limited extent. When looking
for applications, which use (implicitly) a specific function, it might be not enough to look for the function call itself
because there are many middle-layer libraries available, which prescind the used backend libraries and their functions.
Searching for the use of backend functions would just return the middle-layer libraries but not the applications, which
call them via the library.

Another point is related to the request backend: Currently our tool uses the REST API to retrieve data from GitHub.
Since 2016 GitHub offers in addition to their REST API a GraphQL API [23]. It has several advantages regarding the
resource consumption, since the requests can be constructed more precisely in comparison to REST. Multiple REST
requests can be merged into a single GraphQL request and the amount of unsolicited data, which are returned by
REST, can be reduced. All together it becomes simpler to use and can reduce the load on the GitHub API so that their
limits last longer.

We have already laid a good foundation to accomplish these tasks and will extend the interface towards more
complex and optimised searchings. Therefore we will work on an update to support transitive searching and offer
GraphQL as an alternative request backend.

3 https://github.com/openmpi/ompi
4 https://github.com/OpenMPT/openmpt
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6.2. Performance Aspects

Potential performance bottlenecks have to be investigated deeper, though we do not expect significant drawbacks.
Network traffic and storage space required for cloning a repository should not be problematic in an average case.
Though, we have to take care of edge cases where users have very large or dirty repositories. We would like to avoid
hard limitations of file sizes, like the code search API partly does (only files smaller 384 KB are searchable), since
we expect the software projects to grow in future. We can imagine to filter large repositories beforehand for specific
undesirable file formats like binaries, pictures or videos. Cherrypicking of source code files is another possibility to
avoid cloning garbaged repositories.

The performance estimation of a specific search request needs to be improved as well. It would allow to evaluate
the efficiency of optimisation measures but would also assist the user. Befor they submit a search request, they could
be given some kind of estimation of the requirements on time and storage. Then they could decide on their own if they
need additional constraints on the search if they want to hold some requirements on storage and runtime.

To accelerate the analysis, different steps will be parallelized. Since GitHub-server requests are limited anyway it
makes more sense to parallelize data transfer by means of putting additional instances to dedicated nodes of a cluster
with a parallel file system. It needs deeper investigations to what extent the database requests can be a bottleneck and
how parallel accesses may affect the workflow. There are other search backends available like for example the GitHub
Code Search API or GHCrawler5, which promise efficient accessing and storing respectively updating of (meta-)data.
Using them could reduce the load on our database.

We will check if those features are feasible for our tool and how they can be integrated.
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