
heimdallr: Improving Compile Time
Correctness Checking for Message

Passing with Rust

Michael Blesel1(B) , Michael Kuhn1 , and Jannek Squar2

1 Otto von Guericke University Magdeburg, Magdeburg, Germany
{michael.blesel,michael.kuhn}@ovgu.de
2 Universität Hamburg, Hamburg, Germany

squar@informatik.uni-hamburg.de

Abstract. Message passing is the foremost parallelization method used
in high-performance computing (HPC). Parallel programming in general
and especially message passing strongly increase the complexity and sus-
ceptibility to errors of programs. The de-facto standard technologies used
to realize message passing applications in HPC are MPI with C/C++ or
Fortran code. These technologies offer high performance but do not come
with many compile-time correctness guarantees and are quite error-prone.
This paper presents our work on a message passing library implemented
in Rust that focuses on compile-time correctness checks. In our design,
we apply Rust’s memory and concurrency safety features to a message
passing context and show how common error classes from MPI applica-
tions can be avoided with this approach.

Problems with the type safety of transmitted messages can be miti-
gated through the use of generic programming concepts at compile time
and completely detected during runtime using data serialization meth-
ods. Our library is able to use Rust’s memory safety features to achieve
data buffer safety for non-blocking message passing operations at com-
pile time.

A performance comparison between our proof of concept implemen-
tation and MPI is included to evaluate the practicality of our approach.
While the performance of MPI could not be beaten, the results still are
promising. Moreover, we are able to achieve clear improvements in the
aspects of correctness and usability.

Keywords: Message passing · Compile-time checks · Rust · MPI

1 Introduction

Parallelization has become an essential programming technique over the last
decades for applications to utilize the full resources of a computing system.
In HPC, parallelization is an absolute requirement to run applications on dis-
tributed memory systems. The standard technologies used in this context today
c© Springer Nature Switzerland AG 2021
H. Jagode et al. (Eds.): ISC High Performance 2021 Workshops, LNCS 12761, pp. 199–211, 2021.
https://doi.org/10.1007/978-3-030-90539-2_13



200 M. Blesel et al.

are message passing via MPI for inter-node parallelization in conjunction with
frameworks like OpenMP or manual multi-threading for shared memory intra-
node parallelization. Most of these tools are based on C/C++ and Fortran since
these languages have traditionally yielded the best performance results for HPC
applications and therefore make up the majority of existing HPC codebases.

Parallelization provides significant performance increases and more impor-
tantly scalability to applications but it does not come without drawbacks. The
code complexity often increases heavily when parallelization is introduced into
a program [11]. Additionally new classes of errors such as data races, deadlocks
and non-determinism emerge from parallel code [3]. In general, modern com-
pilers have become very good at detecting errors and providing helpful error
and warning messages to the user but in respect to parallelization errors they
are often still lacking. For MPI applications, not many parallelization errors are
caught at compile time. Some static analysis tools such as MPI-Checker [5] exist
but often manual debugging by the programmer is required. Better compile time
correctness checks for message passing applications are therefore desirable.

Many of these problems can be traced back to the programming languages
that are used in HPC applications. Both, C/C++ and Fortran have not been
designed with parallel programming in mind. Intrinsic support for parallel pro-
gramming features and the existing solutions today were either added over time
to their specifications or are provided by external libraries.

Rust is a modern system programming language that focuses on memory
and concurrency safety with strong compile time correctness checks [12]. One
of Rust’s unique features is its memory ownership concept which ensures that
all data has exactly one owner at all times during a program’s runtime and
thereby allows the compiler to guarantee the absence of errors like data-races at
compile time. This paper explores how Rust’s safety mechanisms can be applied
to the design of a message passing library that provides stronger compile time
correctness checks than existing solutions like MPI.

2 Motivation

The purpose of the work presented in this paper is to show how a message passing
library that strongly focuses on compile time correctness checks and usability
can be designed in Rust. This section argues why these attributes are desirable
and might even be more important than raw performance to users.

The authors of [1] have conducted a study about programming languages for
data-intensive HPC applications. They combined an analysis of over one hundred
papers from the HPC domain and a survey of HPC experts and concluded that
the most desired and important features of programming languages in HPC are
usability, performance and portability.

As it can be seen in Fig. 1, usability seems to be the most desired feature for
many users. This makes sense when taking into account that a large percentage
of the userbase of HPC systems are not necessarily parallel programming experts
but rather scientist from other domains. This user group needs to develop scal-
able parallel applications for supercomputers to facilitate their domain specific



heimdallr: Compile Time Correctness Checking for Message Passing 201

Fig. 1. The most important features of HPC programming languages (based on [1])

research. It is therefore important to provide software solutions that make this
process as easy as possible.

Providing better compile time correctness checks for parallel applications can
greatly improve the usability of a message passing library by reducing the need
for manual debugging, which can be tedious for the users. As the next section
will show, MPI and C/C++ have some significant problems in this regard.

Even though Rust is not yet as commonly used in HPC as MPI with C/C++
or Fortran, we chose it due to its fundamental safety and correctness concepts
that it was designed with. The following sections will show that they fit very
well to the context of message passing. Furthermore, we believe it is important
to look into newer technologies that might play a part in the future of HPC.
Rust seems like a good candidate since it has seen more wide spread use as a
more convenient and safer alternative to C/C++ in the software industry over
the last years with support from large companies such as Google, Amazon and
Intel [8]. Also when looking at the next generation of HPC developers many will
not be as familiar with older languages like C anymore and be more accustomed
to modern languages with their design concepts and comfort features.

3 Correctness Problems with MPI

This section highlights some common erroneous coding patterns that can occur
in MPI applications and which are currently not caught at compile time without
the use of external static analysis tools.

Many common errors in MPI code can be traced back to the use of raw,
untyped memory buffers via C’s void pointers. This C-style way of working with
raw memory addresses yields good performance and gives great control to the
programmer, but it also harbors a lot of dangers and hinders the compiler in
detecting data type related errors as the following example shows.



202 M. Blesel et al.

3.1 Type Safety Errors in MPI

MPI functions require the programmer to manually specify the data type of
the passed data buffer. This not only introduces a source of errors but can also
be very inconvenient for the user. Listing 1.1 presents an incorrect MPI code
segment where the true type of the sent data buffer does not match the given
MPI_Datatype argument of the send and receive functions. The true type of the
data buffer is double but the MPI functions are given the MPI_FLOAT data type
argument. This is clearly an error by the programmer but it is not detected by
the compiler. What makes this example even more problematic is that the given
code will run without a runtime crash and cause unexpected program results.
This makes it a hard bug to find in a real application with a large codebase.

1 double *buf = malloc(sizeof(double) * BUF_SIZE);

2 [...]

3 if (rank == 0) {

4 for (int i = 0; i < BUF_SIZE; ++i)

5 buf[i] = 42.0;

6 MPI_Send(buf , BUF_SIZE , MPI_FLOAT , 1, 0,

↪→ MPI_COMM_WORLD);

7 }

8 else if (rank == 1) {

9 MPI_Recv(buf , BUF_SIZE , MPI_FLOAT , 0, 0,

↪→ MPI_COMM_WORLD ,

10 MPI_STATUS_IGNORE);

11 }

Listing 1.1. Faulty MPI code that states the wrong MPI_Datatype argument

Errors like this can easily happen when the data type of a buffer variable
has to be changed at some point during development without the programmer
remembering that this also implies modifying all MPI function calls that use
this buffer. This example highlights another problematic aspect of programming
with MPI. Due to the quite low abstraction level of MPI operations it is very
inflexible regarding changes in the code. Even a simple change like switching the
type of a variable can require changes to large parts of the whole program.

3.2 Memory Safety Concerns with Non-blocking Communication

Listing 1.2 shows an example use case of MPI’s non-blocking communication
operations. When using non-blocking operations like MPI_Isend from the example
the function immediately returns to the caller and the message passing operation
is processed in the background. This leaves the data buffer that is being sent in
an unsafe state where no other part of the application should access it before
making sure that it is safe to be used again. In the given example the process
with rank 0 does not adhere to this and immediately after calling MPI_Isend it



heimdallr: Compile Time Correctness Checking for Message Passing 203

1 if(rank == 0) {

2 MPI_Isend(buf , BUF_SIZE , MPI_DOUBLE , 1, 0,

3 MPI_COMM_WORLD , &req);

4 for(int i = 0; i < BUF_SIZE; ++i)

5 buf[i] = 42.0;

6 }

7 else if(rank == 1) {

8 MPI_Recv(buf , BUF_SIZE , MPI_DOUBLE , 0, 0,

9 MPI_COMM_WORLD , &status);

10 }

Listing 1.2. Faulty non-blocking MPI code that writes to an unsafe buffer

starts to modify the buffer. This makes the outcome of the shown code non-
deterministic. This error is even harder to detect compared to the last example
because the produced results may differ from run to run and the application
might even yield the expected results sometimes.

The given code does not conform to the MPI specification, which states that
the safety of a buffer, which has been used with non-blocking communication,
needs to be verified by calling MPI_Wait or MPI_Test before accessing it again.
However, MPI has no way of enforcing this rule in actual code. There will be no
compile time warnings or errors if the sequence is not correct, which makes bugs
caused by incorrect usage of non-blocking communication hard to track down in
more complicated applications.

4 heimdallr: A Proof of Concept Message Passing Library
Implementation in Rust

In this section we present our work on a proof of concept message passing library
implementation in Rust called heimdallr1. The design of the library is focused on
strong compile time correctness checks and good usability with clear semantics
for all message passing operations. We explain how Rust’s safety and correct-
ness mechanics were applied to the design and implementation of basic message
passing operations to achieve these goals.

4.1 Type Safety Through Generics and Message Serialization

As discussed in Sect. 3.1, MPI requires the user to manually specify the data
type of given data buffers, which can lead to errors. This problem can be solved
quite easily in more modern languages that provide stronger support for generic
programming than C. Listing 1.3 presents the signatures of heimdallr’s blocking,

1 https://github.com/parcio/heimdallr.



204 M. Blesel et al.

1 pub fn send <T>(&self , data: &T, dest: u32 , id: u32)

2 -> std::io::Result <()>

3

4 pub fn receive <T>(&self , source: u32 , id: u32)

5 -> std::io::Result <T>

Listing 1.3. Function signatures of heimdallr’s blocking, synchronous send and receive
operations

synchronous send and receive functions. They work with Rust’s generic types
for their data buffer arguments, which already removes the burden of having to
state the correct data type from the user and leaves it to the compiler. This may
seem like a small and obvious change but it eliminates a lot of potential errors,
makes the message passing code more flexible regarding data type changes and
makes the function signatures more concise.

Leaving the local data buffer type deduction up to the compiler however only
solves half of the problem of type safety for message passing. The other aspect
is to make sure that all processes that are participating in a message exchange
agree about the type of the message’s data. For reasons that are discussed in
Sect. 6.3, this problem is hard to solve at compile time. Therefore, in its current
state, heimdallr is only able to detect errors of this kind at runtime. To make
sure that the data type of a received message is interpreted correctly, heim-
dallr uses serialization. This adds some computational overhead to the message
passing procedure when compared to working on raw byte streams, but it can
ensure that the message data type cannot be misinterpreted on the receiving
side. heimdallr makes use of the established Rust serialization crate Serde [9]
and uses the bincode [7] serialization protocol. This also allows users to easily
send custom made types if they implement Serde’s Serialize and Deserialize
traits. These traits can be automatically generated by Rust if the user simply
adds a #[derive(Serialize, Deserialize)] statement to the declaration of
a custom type. This feature is a nice step up in usability compared to the steps
that are needed in MPI to send user defined types.

4.2 Ensuring Buffer Safety for Non-blocking Communication

One of Rust’s unique selling points are its compile time guarantees for mem-
ory safety without needing a garbage collector. The central feature that allows
the compiler to achieve this is called Ownership. All data that is allocated in
a Rust program has to have exactly one owner. If the owner variable goes out
of scope the memory is automatically deallocated. This concept can be applied
very well to the previously described problems with unsafe data buffers for MPI’s
non-blocking operations. Listing 1.4 presents the signatures of heimdallr’s non-
blocking send and receive functions. They are very similar to the blocking ver-
sions from the last section but contain two significant changes. Instead of a



heimdallr: Compile Time Correctness Checking for Message Passing 205

reference to the data buffer the non-blocking send function takes ownership of
the buffer from the function caller. This means that after the function call has
returned the caller no longer has access to the buffer. Modifying it like in the
MPI example from Listing 1.2 would lead to a compilation error due to accessing
data whose ownership has been moved into the send function. This protects the
buffer while the message passing operation is processed in the background. For
retrieving ownership of the data buffer the non-blocking send function returns a
data handle type, which provides member functions comparable to MPI_Wait.

1 pub fn send_nb <T>(&self , data: T, dest: u32 , id: u32)

2 -> std::io::Result <NbDataHandle <std::io::Result <T>>>

3

4 pub fn receive_nb <T>(&self , source: u32 , id: u32)

5 -> std::io::Result <NbDataHandle <std::io::Result <T>>>

Listing 1.4. Function signatures of heimdallr’s non-blocking send and receive
operations

As we can see, the workflow of using non-blocking communication in heim-
dallr is more or less the same as in MPI but Rust’s ownership concept allows the
library to actually enforce the rules of having to verify the safety status of data
buffers before being able to access them again. This approach works very well
from the perspective of safety but it does have some drawbacks. Data ownership
can only be moved for entire objects. Many HPC applications contain a core
data structure such as a matrix of which only certain parts need to be commu-
nicated via message passing. Using heimdallr’s non-blocking operations in such
a scenario would mean that the whole data structure becomes inaccessible until
the ownership has been retrieved. This is not acceptable for algorithms that
need to work on other parts of the data while the non-blocking message passing
takes place in the background. Therefore, using heimdallr might require some
restructuring of distributed data structures where the parts of the data that are
used in message passing are isolated as separate objects. This might impact the
performance negatively for reasons such as worsened cache-locality.

1 match client.id {

2 0 => nb = client.send_nb(buf , 1, 0).unwrap (),

3 1 => buf = client.receive (0,0).unwrap (),

4 }

5 match client.id {

6 0 => {

7 buf = nb.data().unwrap ();

8 println !("{:?}", buf);

9 },

10 1 => println !("{:?}", buf), // THIS DOES NOT COMPILE!

11 }

Listing 1.5. Simplified example of a use pattern of heimdallr’s non-blocking
communication that produces compilation errors



206 M. Blesel et al.

Listing 1.5 showcases a second problem with the usage of heimdallr’s non-
blocking operations. In the first match statement of the example in line 2 the
process 0 uses a non-blocking send operation to transmit a buffer to process 1.
In the second match statement in line 7 the ownership of the buffer is requested
back from process 0 and both processes try to access it by printing the buffer’s
contents. Getting the ownership of the data back works well for process 0 but
this example does not compile because of process 1’s access on the buffer variable
in line 10. Rust’s borrow-checking algorithm is not able to correctly analyse the
control flow of this example program and instead detects that process 1 might
not have ownership of the buffer variable because it was moved in the previous
match statement by process 0.

This is problematic because the code pattern given in Listing 1.5, where a
non-blocking operation that is only executed conditionally based on the process
ID and then later concluded in a similar conditional block, appears frequently
in message passing applications. Up until this point we could not find a general-
izable solution for this problem. Depending on the context most often the code
can be restructured in a way that the compiler will accept it in the end, but
doing so will add more complexity to the code and and make it less readable.
We hope that future improvements on the Rust borrow checker algorithm like
those presented in [6] will fix this problem but currently workarounds in the code
need to be used to implement these kind of message passing code patterns.

5 Related Work

When looking at the traditional approach of using MPI with C/C++ or Fortran,
static analysis methods are the most promising for detecting errors in the code or
communication scheme of parallel applications. The MPI-Checker [5] project is
a static analysis tool built upon LLVM’s C/C++ compiler frontend Clang. It is
able to detect some process local errors such as type mismatches between the true
data type of a buffer and the stated MPI_Datatype and incorrect buffer referencing
where the passed void pointer does not point to valid data. Furthermore, it is able
to detect some common errors in the communication scheme of applications. This
encompasses deadlock detection and missing communication partners for point-
to-point message passing. Additionally it can analyze and detect some errors
with MPI’s non-blocking communication such as missing MPI_Wait calls. As this
paper has shown, many of these error classes are already caught automatically
at compile time by our Rust implementation.

One reason why MPI applications are so error-prone is that end users have
to use the low-level MPI operations to parallelize their applications. From a
usability standpoint, a higher abstraction level as well as easy-to-use parallel
data structures and algorithms would be preferable. The desire for such solutions
is apparent when looking at the popularity of OpenMP, which provides such
features for a multi-threading context. The Chapel [4] project is one example
for such a solution. Chapel is a special purpose language that is designed for
scientific computing in an HPC context. It provides automatically distributed



heimdallr: Compile Time Correctness Checking for Message Passing 207

data structures and algorithms to the user with a syntax that is comparable to
writing sequential code. Most of the parallelization logic is hidden from the user,
which avoids possible parallelization errors. This approach has great usability
advantages but being its own special purpose programming language, the barrier
of entry is higher compared to using general purpose languages like C or Rust.

MPI bindings for Rust exist in the form of rsmpi [10], which supports a
subset of MPI’s operations containing all two-sided communication functions
and most collective operations. The syntax of the message passing operations is
in a more Rust-like style that looks quite different from traditional MPI code.
Improvements like automatic data type deduction for buffers and some guar-
antees for better handling of MPI_Requests for non-blocking communication are
present, where the latter is handled quite different than in our implementation.
For users who are not familiar with MPI code, the rsmpi syntax might prove a
bit challenging.

For our work, we decided against an approach that is reliant on an existing
MPI implementation. Building our Rust message passing library from scratch
allowed for a more concise interface and clearer semantics of message passing
functions. Furthermore, we were able to experiment with some ideas that do not
exist in MPI, such as shared distributed data structures and a central daemon
process that can participate in the message passing at runtime.

6 Evaluation

In this section we perform an evaluation on our work with heimdallr. In Sects. 6.1
and 6.2 the performance of heimdallr is compared to equivalent MPI applications.
All measurements for the benchmarks in this sections where done on identical
computing nodes with the following specs:

– 4x AMD Opteron Processor 6344 (48 cores total)
– 128 GB RAM
– 40 GBit/s InfiniBand network (using TCP over InfiniBand)

For a fair comparison, MPI and heimdallr both used TCP over InfiniBand,
because heimdallr currently only works with TCP. All results presented in this
section are averaged over three separate benchmark runs.

6.1 Performance Comparison on a Realistic Application

This benchmark uses a realistic scientific application called partdiff that was
developed for teaching purposes at the University of Hamburg’s Scientific Com-
puting group. It solves a partial differential equation by continuously iterating
over a distributed matrix with a stencil operator. This type of application can
be categorized as a structured grid approach and belongs to the so-called seven
dwarfs of HPC [2], which makes it a good benchmark candidate to compare
both message passing implementations. The original partdiff is written in C and



208 M. Blesel et al.

Fig. 2. Weak scaling benchmark for MPI and heimdallr versions of the partdiff appli-
cation with increasing (#Nodes,#Total processes)

parallelized with MPI. We implemented an equivalent Rust version that uses our
heimdallr library for the message passing aspects.

Figure 2 presents a runtime comparison of the two partdiff versions for dif-
ferent configurations of computing nodes and process counts. The weak scaling
behaviour of both applications was examined. The results show that from a per-
formance standpoint heimdallr is beaten by MPI. However, this was expected
since the performance of MPI implementations has been optimized for decades
and for our proof of concept implementation pure performance was not the main
focus. The runtime differences can mainly be attributed to two factors. Firstly,
the serialization of message data will always produce more overhead than MPI’s
approach of sending raw byte streams that are written directly into memory at
the receiver’s end. Secondly, since we only had four computing nodes available
the later data points spawn a lot of processes on the same nodes. This leads to a
lot of intra-node communication, for which MPI features optimizations that are
not yet implemented in heimdallr.

Overall, for most data points heimdallr does not perform significantly worse
than MPI and we believe that the provided benefits from better compile time
correctness checking and its usability advantages make up for the performance
differences.

6.2 Micro Benchmarks for Message Passing Operations

While the previous benchmark shows heimdallr’s comparable performance in the
context of a realistic application, it does not expose the direct performance dif-
ference between the individual message passing operations. Table 1 refers to a
micro benchmark that only measures message passing performance without any
other unrelated computations. It exchanges 1,000 messages in total between two
processes on different computing nodes. Multiple measurements with increasing
message sizes were done for the blocking send and receive operations of MPI and
heimdallr. The results show that heimdallr’s message passing operations have a



heimdallr: Compile Time Correctness Checking for Message Passing 209

Table 1. Performance comparison of heimdallr and MPI for 1000 sent messages
between two computing nodes with increasing data size

1000× 100KB 1000× 1KB 1000× 10KB 1000× 100KB 1000× 1MB

MPI 0.0257 s 0.0284 s 0.0456 s 0.2116 s 1.2426 s

heimdallr 0.1661 s 0.1822 s 0.3650 s 2.1253 s 19.303 s

Serialization

time

0.0012 s 0.0119 s 0.1192 s 1.1795 s 12.056 s

Serialization
time share

0.7% 6.5% 32.7% 55.5% 62.5%

significant computational overhead compared to their MPI equivalents. A signifi-
cant part of this is due to the serialization of the message data that is performed
by heimdallr. In the second table row the serialization and deserialization time
of the data buffers has been isolated. It turns out that the time spent in the
serialization procedure is above average compared to the message size. This is
a trade-off in heimdallr between safety/usability and performance. Serialization
allows for transmitting nearly any user defined type and also gives runtime error
checks for type correctness of message passing operations but will always require
additional computations for the transformation of the transmitted data.

6.3 Limitations of Compile Time Correctness Checks for Message
Passing Applications

All compile time correctness checks of heimdallr have in common that they only
consider errors that are local to one process of the parallel heimdallr application.
Parallelization errors such as deadlocks caused by blocking operations or missing
communication partners for send/receive operations are not caught by the com-
piler. This is due to the fact that the compiler does not know about the broader
context of the message passing code. Without knowledge of the actual parallel
execution configuration in which heimdallr library calls will be communicating
with each other, there is no way to detect these types of errors at compile time.

At this point, there are two possible solutions to include such correctness
checks. Firstly, an external static analysis tool like MPI-Checker [5] could be
developed for heimdallr. Secondly, direct modifications to the Rust compiler
could be made to make it aware of the logic and semantics of message passing
applications. The first solutions seems more feasible at the current time. With
a static analysis approach that is aware of the parallel context of SPMD appli-
cations and the semantics of the used message passing library more thorough
correctness checks for process interactions could be deployed.

7 Conclusion and Future Work

This paper shows that the Rust programming language is very applicable for
message passing applications. Our heimdallr implementation is able to provide a



210 M. Blesel et al.

much safer environment for parallel programming by leveraging Rust’s compile
time correctness guarantees. Compared to MPI, the performance of heimdallr
is lacking behind, but not by unacceptable margins. In addition, our implemen-
tation is not production ready yet but a proof of concept to demonstrate the
benefits of concepts such as Ownership for message passing.

Even though improvements in memory and type safety were made, compile
time correctness checks for the validity of an application’s communication scheme
are still missing and would require the help of external static analysis tools
or improved compiler support. We plan to integrate static analysis checks as
mentioned in Sect. 6.3 into the build process of heimdallr applications.

This work shows that improvements in correctness checking of parallel mes-
sage passing applications can be achieved without the need for direct compiler
modifications but a more complete solution would require awareness by the com-
piler about the context of message passing. Rust’s correctness checks for multi-
threaded code are able to detect errors such as data-races because the compiler
is aware of the semantics of such concurrent programs. Integrating comparable
correctness checking procedures for SPMD parallelization schemes directly into
the Rust compiler might yield even stronger correctness guarantees for message
passing applications and presents itself to be promising follow-up research on
this topic.

Since most of the existing HPC infrastructure today is built upon MPI and
C/C++ it would be interesting to further explore whether Rust’s safety con-
cepts such as ownership could be applied there retroactively via the use of static
analysis and source-to-source translation methods.

It also seems feasible that at least some of the correctness features of heim-
dallr could be implemented in modern C++ bindings for MPI by using templates
for the type safety aspects and smart pointer types such as unique ptr for data
buffer protection in the context of non-blocking communication.

References

1. Amaral, V., et al.: Programming languages for data-intensive HPC applications: a
systematic mapping study. Parallel Comput. 91, 102584 (2020). https://doi.org/
10.1016/j.parco.2019.102584

2. Asanović, K., et al.: The landscape of parallel computing research: a view from
Berkeley. Technical report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley (2006). http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

3. Ba, T.N., Arora, R.: Towards developing a repository of logical errors observed
in parallel code for teaching code correctness. In: EduHPC@SC, pp. 69–77. IEEE
(2018)

4. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

5. Droste, A., Kuhn, M., Ludwig, T.: MPI-checker: static analysis for MPI. In:
LLVM@SC, pp. 3:1–3:10. ACM (2015)



heimdallr: Compile Time Correctness Checking for Message Passing 211

6. Matsakis, N.D.: An alias-based formulation of the borrow checker. http://
smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-
of-the-borrow-checker/ (2018). Accessed on Mar 2021

7. bincode org: Bincode. https://github.com/bincode-org/bincode (2021). Accessed
on Mar 2021

8. R, B.: “Rust is the future of systems programming, C is the new assembly”:
intel principal engineer, Josh Triplett. https://hub.packtpub.com/rust-is-the-
future-of-systems-programming-c-is-the-new-assembly-intel-principal-engineer-
josh-triplett/ (2019). Accessed on Mar 2021

9. serde rs: Serde. https://serde.rs/ (2021). Accessed on Mar 2021
10. rsmpi: rsmpi. https://github.com/rsmpi/rsmpi (2021). Accessed on Mar 2021
11. Vanderwiel, S.P., Nathanson, D., Lilja, D.J.: Complexity and performance in par-

allel programming languages. In: HIPS, p. 3. IEEE Computer Society (1997)
12. Yu, Z., Song, L., Zhang, Y.: Fearless Concurrency? Understanding Concurrent

Programming Safety in Real-World Rust Software. ArXiv: CoRR abs/1902.01906
(2019)


