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Abstract—Many scientific applications use OpenMP as a rela-
tively easy and fast approach to utilise symmetric multiprocessor
systems at their full capacity. However, scalability on shared
memory systems is limited and thus distributed parallel computing
is inevitable if the full potential through horizontal scaling shall be
achieved. Additional software layers like MPI must be used, which
require further knowledge on the scientific developers’ side. This
paper presents CATO, a tool prototype using LLVM and Clang, to
transform existing OpenMP code to MPI; this enables distributed
code execution while keeping OpenMP’s relatively low barrier of
entry. The main focus lies on increasing the maximum problem
size, which a scientific application can work on; converting an
intra-node problem into an inter-node problem makes it possible
to overcome the limitation of memory of a single node.

Our tool does not focus on improving the absolute runtime,
even though it might improve it by e.g. introducing concurrency
during the I/O phase; but we rather focus on increasing the
maximal problem size and our benchmark of a stencil code shows
promising results: The transformation preserves the speedup
trend of the code to some extent. Another example demonstrates
the capability to increase the maximum problem size while using
additional compute nodes.

Keywords-OpenMP, MPI, LLVM, Source Transformation, Code
Distribution

I. INTRODUCTION

Over the years, larger many-core architectures became an
essential part of the modus operandi of scientific computing:
To increase the performance of a compute node, the trend
goes towards increasing the amount of CPU cores instead
of core frequency due to power and thermal constraints [1].
It becomes inevitable to use parallelisation techniques on
shared memory to fully utilise a node’s performance. One
prominent solution is to use OpenMP, which allows executing
concurrent threads on shared memory within a single node.
Due to OpenMP’s compiler-based pragma approach, it usually
only requires relatively little changes to the source code and

allows incremental parallelisation. This lowers the barrier of
entry for scientific developers.

But for solving large-scale problems, distributed computing
is necessary: While single compute nodes typically feature
main memory configurations in the range of several gigabytes,
large-scale simulations can require multiple terabytes of main
memory. But the use of MPI for leveraging distributed memory
would require costly code changes or even significant code
restructuring.

A. Motivation

The advantage of OpenMP is that it is relatively easy to use:
A developer only needs to add simple compiler pragmas into
the code. The compiler and runtime take care of the thread
creation, the distribution of data and the computation. This is
the reason why the majority of scientific software, which makes
use of high performance computing (HPC) systems, also makes
use of OpenMP. However, the parallelisation through OpenMP
is limited to a single node. This directly influences the kind of
problem that can be solved by a scientific application because
it has to fit in a single node’s main memory. For example, an
input grid would be limited regarding its area, resolution or
number of dimensions, which directly impacts the explanatory
power of the scientific application.

For a trivial problem without the need of intercommunication,
the memory limitation of a single node can be bypassed by
dividing the problem into smaller sub-problems and solve them
with a new, independent application process on its own node.
But as soon as the sub-problems need to exchange data, a
new parallelisation scheme for distributed memory needs to be
applied.

If the development team of the scientific application consists
mostly of experts of the problem’s domain and there is no
time or budget to do the MPI parallelisation themselves,
our tool – CATO – could offer them a satisfying solution
to compute bigger problem sizes. Using CATO makes it
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possible to utilise distributed HPC hardware without having
knowledge about MPI, as CATO instruments applications
with the necessary MPI operation calls automatically. To
preestimate, which memory regions might be worthwhile to
be distributed, our tool analyses the used OpenMP directives:
shared (multidimensional) variables are a good candidate to
be distributed.

There are other possibilities to execute an OpenMP ap-
plication on distributed hardware (cf. section II) but these
usually require substantial code changes. With OpenMP 4.0 [2]
offloading capabilities have been added but they require
advanced knowledge of OpenMP and are intended to be used
with coprocessors or accelerators on a single node.

B. Outline

This paper describes our prototype of CATO, which makes
use of a fully functional LLVM pass and allows the distribution
and access of memory in compliance with a preset commu-
nication pattern. It is structured as follows: At first we give
an overview in section II about related work and technologies,
which CATO makes use of. In section III we outline the
individual components of CATO; The functional prototype
allows us to demonstrate and partially evaluate the feasibility
of our prototype. Section IV discusses the ongoing development
of CATO to automatise and improve certain modules. Finally,
section V concludes the review of the current status of CATO.

II. RELATED WORK

There are several possibilities to execute OpenMP code on
distributed hardware to benefit from an increased maximum
memory or even an increased runtime performance. Two
popular practices to tackle these problems are distributed shared
memory and MPI.

A. Distributed Shared Memory

This category contains operating systems and programming
libraries, which abstract the memory distribution by simulating
a view on a single virtual shared memory. They can be
distinguished by their need to change the original source code.

The user needs to adjust the source code if for example
Partitioned Global Address Space (PGAS) is used, which
creates one virtual shared memory. This memory virtualisation
is accessible by every processing element. It is not relevant
whether the machine really features one large shared memory, a
PGAS language like Unified Parallel C or Coarray Fortran will
still create the illusion of one large shared memory [3]. Another
example for such an abstraction layer was TreadMarks [4] from
the 1990s, but the source is not publicly available anymore.

Other approaches similar to ours are programming models
like XcalableMP [5] or OpenMPD [6], which offer new
pragmas. Users can use them to annotate their code to define
which variables shall be distributed amongst several nodes. In
contrast to our solution this requires still some code adjustments
and focuses primarily on performance but not optimising the
memory footprint.

An alternative to those libraries are low-level system layers
like Single System Image [7] (SSI) and Cluster OpenMP [8].
SSI provides a global centralised view of a distributed
system. However, software implementations of SSI tend to
be impaired by poor performance and scalability. Even if
SSI is implemented on the hardware level, the scalability is
suffering due to process migration [3]. Intel Cluster OpenMP
is based on TreadMarks and offered a proprietary OpenMP
implementation, which handled the distributed execution, but
has been abandoned in the meantime.

These approaches are not applicable for our target audience
because we assumed in section I-A that a re-implementation
is out of their scope.

B. MPI Approaches

Several approaches [9]–[11] translate OpenMP code into
equivalent MPI code but do only use two-sided communication,
which can have a negative impact on performance. The
authors of [12] examine the potential use of MPI-2 one-sided
communication to replace OpenMP in a simple algorithm, but
the replacement performed worse in comparison to OpenMP
and was hard to implement.

The authors of [13] make use of LLVM to analyse an
application’s byte code and generate system profiles to create
the final hybrid code via their implementation of the BSML
library [14]. Their approach requires that the application user
creates an XML file to describe their algorithm. On the other
hand, their tool automatically determines a fitting configuration
of MPI processes and OpenMP threads. Our approach does not
oblige the user to provide information about their algorithm, in
exchange we leave the determination of the best configuration
of MPI processes and OpenMP threads to the user – we suppose
that the user is able to choose the best configuration because
of their expert knowledge of the problem domain.

In addition, all these approaches do not focus on increasing
the maximum problem size but on improving the runtime
performance. It is possible to replace OpenMP with MPI
RMA in general but additional effort is necessary to lessen
the overhead as much as possible. However, the extension of
MPI RMA through MPI-3 provides the user with additional
possibilities to achieve this goal.

III. CATO

Our tool, CATO (compiler assisted source transformation
of OpenMP kernels), consists of several modules, of which the
most important ones have already been implemented as a pro-
totype. Its main component is an LLVM [15] Transform Pass,
which analyses and transforms the original OpenMP kernel
during the optimisation phase (cf. fig. 1). Focusing on existing
OpenMP kernels allows CATO to derive valuable information:
the part of the code, which should be executed concurrently,
and memory, which should be processed concurrently, indicated
by the shared variables.

LLVM is an open source compiler infrastructure and is built
in a very modular way, consisting of different parts like the
LLVM Core, LLVM OpenMP and language frontends and



hardware architecture backends. Besides its modularity, one
of LLVM’s biggest strengths is its intermediate representation
(IR), which is a human readable, assembly like representation
of the code that is being compiled. Using LLVM IR eases
the analysis and transformation of code through the LLVM
optimizer and also makes LLVM very suitable for writing
individual tools to analyse, optimise and modify code during
compilation. By using the well-established LLVM framework,
we are independent of the source code language and do not
need to worry about changes of the code style. Evaluating the
source code directly (for example, through regular expressions)
would be more error-prone and unstable than using LLVM’s
abstraction layers.

Our automatically inserted MPI parallelisation kernel might
be less scalable and provide less performance than hand-
written, optimised MPI code. But since CATO’s focus lies
on additional horizontal scaling and targets users without the
possibility to implement the MPI parallelisation themselves,
this poses only a minor drawback. We make also use of one-
sided communication operations from MPI-3 [16], which offer
high performance but are quite cumbersome and erroneous
to use if done by hand. The authors of [17] have shown that
modern interconnect hardware like InfiniBand, Blue Gene and
Ethernet RoCE, which allows an efficient execution of RDMA,
benefits from this mechanism through shorter latency times
and less usage of CPU and memory resources. The automatic
aspect of CATO is therefore an opportunity that users without
the capability to use MPI-3 RMA may still benefit from its
advantages.

A. General Workflow

We aim for an easy to use workflow: The generation of IR
code, the execution of our pass and building the binary in the
end is handled by the LLVM infrastructure itself. The only
steps, which have to be performed by the user, are the first
two steps as well as the last one.

1) Replace compiler call with CATO wrapper script
2) (optional) Provide expert knowledge by adding CATO

pragmas
3) LLVM frontend translates original code into IR
4) CATO analyses and transforms IR
5) LLVM backend translates IR into machine code
6) Execute binary via mpiexec or srun

The user needs to adjust their build script and decide on the
optimal binding of processes and threads to the hierarchical
topology of their hardware. Choosing the correct thread/process-
data affinity is important to achieve optimal performance [18].
Because the newly built binary involves MPI function calls, it
needs to be executed as an MPI application.

Currently, CATO uses a predefined set of rules how memory
in OpenMP kernels is handled (cf. section III-B). We denote
these rules as equivalence class (EC). An EC preserves the
semantics of a communication pattern using OpenMP, only
memory accesses are adjusted (and distributed if required)
while maintaining equivalent behaviour. This modular approach
allows us to implement and evaluate different ECs and to

gradually expand the variability of communication patterns.
In contrast to the core modifications, which are performed on
the IR, the ECs are written in C++, so changes can easily
be done and tested. In a later version of CATO the user may
annotate their application code with pragmas to enforce a
communication pattern or replacement strategy.

B. Status of Implementation

The current version of CATO takes care of the identification
of OpenMP kernels and replaces it with an EC, which makes
use of MPI. A wide variety of OpenMP pragmas can already
be transformed to MPI:
• parallel and parallel for
• sections
• task and taskwait
• single and master
• barrier and critical
• firstprivate and lastprivate clauses
• reduction clause

Currently only static scheduling is handled and even though the
task pragma is included, its implementation is merely a proof
of concept and lacks good performance: The key restriction
for the OpenMP codes to be transformed is that the usage
of some explicit pointer arithmetic is not allowed due to the
memory being distributed over multiple processes, each having
its own address space. Besides that, most OpenMP codes can
be translated to MPI.

1) Memory Handling: In order to share a variable on
distributed memory, CATO will insert (one-sided) MPI commu-
nication. In the current version, three different usage patterns
of a shared variable are considered:

I Master-based: Only the master process will hold the data,
every other process has to read the data first. This class
is intended for smaller variables such as single integer
variables, where a distribution of the data is not desired.

II Duplicated: Every process will have its local duplicate of
the variable. Besides the larger memory consumption, a
store operation from one process has to be applied to all
duplicates in the other processes as well to preserve the
memory consistency. Therefore, this pattern is intended for
shared data that is mostly read (e.g. an auxiliary look-up
table).

III Distributed: Multidimensional arrays are split into inde-
pendent chunks and distributed amongst the available
processes; this is the default class for multidimensional
arrays. For a 2D-array, this means that each process will be
assigned a subset of the matrix. When a process accesses
the distributed data, it checks at runtime if it is already
available locally. If communication is needed, a process
will load/store a whole (cache-)line of the data from/to
the process owning the accessed line.

2) Replacement: The replacement of OpenMP code is
handled by inserting calls of the CATO runtime library into
the IR of the program. The first step of the transformation
inserts the MPI initialisation at the beginning of the main



Figure 1: LLVM workflow: Frontend → Optimizer → backend

function and finalisation code in front of all exit points of the
program. The next step is the replacement of simple OpenMP
functions that can be translated into MPI equivalents. These are
functions like omp_get_num_threads, omp_get_thread_num

and omp_barrier. Those functions calls are simply replaced
in the IR code by their respective MPI equivalents.

After these early steps, all OpenMP parallel regions in
the code have to be identified and the memory allocation
of shared OpenMP variables have to be replaced. At this point,
all #pragma omp parallel statements in the original source
code have been translated into calls to the OpenMP runtime
library by the LLVM frontend. In its IR form, the body of each
OpenMP parallel region has been outlined into a new function
(a so-called microtask), which is passed to OpenMP’s runtime
library for execution via OpenMP threads. The microtasks
take pointers to the shared variables used by them. With
this information, CATO identifies all shared variables and
all sections of the code that have to be run in parallel. At
first, the pass removes the OpenMP runtime library calls and
replaces them with direct calls to the microtasks, thereby
essentially removing all remaining OpenMP functionality from
the program. This creates a working MPI program but still
misses the communication regarding the shared variables.

Modifying the memory allocations and adding MPI commu-
nication to the shared variables is the biggest task of CATO.
Which variables need to communicate via MPI is extracted
from the argument lists of the microtasks. The pass then
traces the memory allocation points for the shared variables
and replaces them with calls to the CATO runtime library,
where the memory allocation is suitably replaced with an
allocation pattern matching the selected communication pattern
for the shared variable. In its current state, CATO is able to
replace the standard C/C++ memory allocations functions like
malloc, calloc, new etc. A later version will also add support
for memory handling with some commonly used third-party
libraries (cf. section IV-B).

The last step of the pass is the insertion of MPI com-
munication for each memory access to a shared variable.
This is implemented by analysing which load and store
instructions in the IR code are accessing shared variables
and then replacing them with CATO runtime library calls for
the corresponding communication pattern. To optimise halo
updates, which are for example common in stencil codes,
we cache lines of adjacent memory blocks by using bulk
communication instead of transmitting only single values. This

minimises the amount of necessary inter-node communication.

C. Demonstration of Pass Transformation

To demonstrate the procedure, we used CATO to transform
the code shown in listing 1, which allocates two arrays,
initialises them and then performs a copy. Since the original
IR code and the transformed IR code are quite extensive (170
respectively 266 lines of code), we discuss only an excerpt
from the IR code after the transformation (cf. listing 2). The
original IR of listing 1 can be obtained by generating it via
clang -emit-llvm -S.

1 int* a = (int*)malloc(sizeof(int)*4);
2 int* b = (int*)malloc(sizeof(int)*4);
3 // [...] Initialisation
4 #pragma omp parallel for
5 {
6 for(int i = 0; i < 4; i++) {
7 b[i] = a[i];
8 }
9 }

10 printf("[%d,%d,%d,%d]",b[0],b[1],b[2],b[3]);
11 free(a);
12 free(b);

Listing 1: OpenMP example (Original C code)

According to section III-B2 there are several steps, which
are performed during the transformation.
• Initialisation: The call of cato_initialize in line 1, sets

up the MPI environment (initialisation of MPI as well as
retrieving rank and communicator size).

• Allocate memory: The memory, which is shared within
the OpenMP kernel, needs special handling during its
lifetime (cf. section III-D). Therefore CATO adds an
additional memory management layer and substitutes the
original malloc calls in lines 3 and 4.

• Initialise memory: Complying with the memory handling
by CATO, the pass substitutes all read and write operations
on affected memory (line 7). The initialisation of the
memory in listing 1 is performed in the sequential section
of the application, therefore CATO replaces it by a
shared_memory_sequential_store.

• Execute microtask: In line 9 the microtask is executed di-
rectly without the original kmpc_fork_call, which would
have set off the OpenMP thread fork. Within the microtask
(lines 29 to 40) the operations of the OpenMP kernel body
are executed. Since each process is only responsible for a
section of the shared memory, the boundaries are adjusted



in line 37 with respect to the current rank and the total
amount of processes. CATO adds an explicit barrier in line
10, because #pragma omp parallel for joins all threads
with an implicit barrier.

• Access memory: Like before, each access on shared
memory is handled by CATO, therefore load operations
are replaced accordingly in line 15.

• Termination: In lines 19 to 24 all memory managed
by CATO is freed again and the MPI environment shuts
down.

1 call void @_Z15cato_initializeb(i1 false)
2 ; [...]
3 %call = call i8* ←↩

@_Z22allocate_shared_memorylii(i64 16, i32 ←↩
1275069445, i32 1)

4 %call1 = call i8* ←↩
@_Z22allocate_shared_memorylii(i64 16, i32 ←↩
1275069445, i32 1)

5 ; [...]
6 %arrayidx = getelementptr inbounds i32, i32* ←↩

%11, i64 0
7 call void (i8*, i8*, i32, ...) ←↩

@_Z30shared_memory_sequential_storePvS_iz(i8* ←↩
%12, i8* %13, i32 1, i64 0)

8 ; [...] More initialisation
9 call void @.omp_outlined.(i32* null, i32* null, ←↩

i32** %b, i32** %a)
10 call void @_Z11mpi_barrierv()
11 %23 = load i32*, i32** %b, align 8
12 %arrayidx5 = getelementptr inbounds i32, i32* ←↩

%23, i64 0
13 %24 = bitcast i32* %23 to i8*
14 %25 = bitcast i32* %4 to i8*
15 call void (i8*, i8*, i32, ...) ←↩

@_Z29shared_memory_sequential_loadPvS_iz(i8* ←↩
%24, i8* %25, i32 1, i64 0)

16 ; [...] More data loading
17 %call9 = call i32 (i8*, ...) @printf(i8* ←↩

getelementptr inbounds ([15 x i8], [15 x i8]* ←↩
@.str.1, i64 0, i64 0), i32 %27, i32 %32, i32 ←↩
%37, i32 %42)

18 ; [...]
19 call void @_Z18shared_memory_freePv(i8* %44)
20 call void @_Z18shared_memory_freePv(i8* %46)
21 br label %cato_finalize
22

23 cato_finalize:
24 call void @_Z13cato_finalizev()
25 %47 = load i32, i32* %8
26 ret i32 %47
27 }
28

29 define internal void @.omp_outlined.(i32* noalias ←↩
%.global_tid., i32* noalias %.bound_tid., ←↩
i32** dereferenceable(8) %b, i32** ←↩
dereferenceable(8) %a) #2 {

30 entry:
31 ; [...]
32 %0 = load i32**, i32*** %b.addr, align 8
33 %1 = load i32**, i32*** %a.addr, align 8
34 store i32 0, i32* %.omp.lb, align 4
35 store i32 3, i32* %.omp.ub, align 4
36 ; [...]
37 call void ←↩

@_Z26modify_parallel_for_boundsPiS_i(i32* ←↩
%.omp.lb, i32* %.omp.ub, i32 1)

38 ; [...] Acessing and writing data arrays a and b
39 ret void
40 }

Listing 2: OpenMP example (IR after pass transformation)

D. Proof of Concept

In order to prove the concept, we used CATO on an
application that solves a heat dissipation via a 2D PDE using a
stencil code. The codes were run on a cluster consisting of up to
10 compute nodes, fig. 2a shows the resulting performance. The
used nodes consist of two Intel Xeon X5650 CPUs (2.67GHz),
six cores each with hyperthreading. They are equipped with 12
GiB of RAM and operated by Ubuntu 18.04.4 with Linux 4.15.
Gigabit Ethernet (1GbE) is used as interconnection, MPICH
3.3.1 provides the MPI implementation.

Scaling: Key property to note is that significant overhead is
added when the transformed variant uses as many processes as
the original application uses threads. This definitely needs to be
addressed in future versions. Nevertheless, the rate of growth
of runtimes is strongly correlated and differs only by a constant
factor. This is an important outcome regarding the actual use
case: It is possible to increase the problem size beyond the
single node’s memory without a non-linear increase of runtime,
which would render this approach impractical.

However, the scaling behaviour of the translated MPI version
is not always as good as in this example. Another benchmark
of a Fast Fourier Transform – which combines the data with a
butterfly scheme, resulting in all-to-all communication pattern
– showed that the overhead imposed by MPI is quite huge and
non-linear. Our current implementation makes use of MPI-3
active target communication, which is well-suited for a regular,
deterministic communication pattern like the stencil code of our
PDE solver. But at the current development stage we use a quite
conservative locking so far, which impairs the performance of
for example FFT, which makes extensive use of communication
operations.

Therefore, the performance achieved by using more cores
(that are distributed among several computation nodes) is highly
influenced by the need for communication of the translated
application. This effect was especially present when using
CATO to translate a specific Branch and Bound algorithm
to MPI. In this particular case, the runtime of the MPI
version largely depends on the amount of synchronisation and
communication needed (in order to update the current solution,
which all processes should bound against).

Initial Data Distribution: Unfortunately, the current im-
plementation of CATO has one limiting factor regarding its
memory usage: The parallel part of an OpenMP application
usually only covers the actual calculations done on data but not
their initialisation. CATO currently matches this behaviour with
only one process executing the sequential part and therefore
data initialisation. At the beginning of a parallel region all the
data initialised in the sequential part needs to be distributed to
all other processes, which leads to overhead of runtime and
memory consumption. This is limiting the possibility of CATO
to enable larger problem sizes, because the initial data has to
fit within the master process’ memory. To solve this problem,
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each node needs to perform parallel I/O for initialisation, which
can be quite manifold - ranging from simple data generation
at runtime to reading files up to complex I/O backends like
NetCDF. See section IV-B for a detailed discussion.

1 void* createMemory() {
2 return malloc(100000000);
3 }
4

5 int main() {
6 void *pmem = createMemory();
7 return 0;
8 }

Listing 3: Trivial malloc kernel

Figure 2b demonstrates the problem using the example of a
trivial malloc call allocating a constant number of bytes (cf.
listing 3).
• Unmodified: Each process allocates memory for the initial

problem, so the total memory consumption increases.
• Modified: Each process only allocates memory for its

share. Even though the overhead is crucial for a single
process, its effect lessens by using more processes.

Our pass tracks malloc calls in the application and adjusts
the original argument so that each process only has a part of the
requested memory. The pass modifies the malloc kernel code
so that each process only allocates a fraction of the requested
memory, i.e., not 100MB anymore but 100 MB

NProcs . So instead of
having only one process like in the original version, which has
to fulfil the whole memory requirements, we can now split the
memory requirement amongst several processes. The modified
IR code in listing 4 shows the result of the automatic insertion
of MPI methods. Since the MPI environment needs a correct
setup, we inject functions into the IR code (line 12 and line
14), which are wrapper calls to the initialisation and finalisation

functions of MPI. To adjust the allocation call with respect to
the total amount of processes, the original argument, which is
passed to malloc is divided by the total amount of available
processes (cf. lines 2 to 4). The resultant communication of
the split memory is omitted in this listing.

1 define dso_local i8* @createMemory() #0 {
2 %1 = call i64 @_Z12get_mpi_sizev()
3 %2 = sdiv i64 100000000, %1
4 %3 = call noalias i8* @malloc(i64 %2) #2
5 ret i8* %3
6 }
7

8 define dso_local i32 @main() #0 {
9 %1 = alloca i32, align 4

10 %2 = alloca i8*, align 8
11 store i32 0, i32* %1, align 4
12 call void @_Z15cato_initializev()
13 %3 = call i8* @createMemory()
14 call void @_Z13cato_finalizev()
15 store i8* %3, i8** %2, align 8
16 ret i32 0
17 }

Listing 4: IR (extract) of malloc kernel after adjustments by
LLVM pass

IV. FURTHER DEVELOPMENT STEPS

The implementation of CATO has yet to be finished, but
the current prototype provides enough functionality to prove
the feasibility of the concept. We will continue to extend the
feature set of OpenMP, which can be handled by CATO, like
dynamic scheduling. Two major topics, which will be worked
on next, are improvements on how communication patterns are
handled as well as how I/O can be adjusted to allow a larger
maximum problem size.



A. Improve Handling of Communication Patterns

At the moment the memory handling by the replacement
code is quite limited and needs further improvement and more
adaptability. By adding a classification component, CATO could
provide specifically modulated ECs for a better fitting match
to the detected communication pattern of the original OpenMP
kernel.

An automatic detection of access pattern is quite hard,
therefore in the final version we need to use heuristics. At first
we will focus on the amount of read and write operations on
memory of interest as well as on the sequence of their code
appearance. This gives already a first estimate of the kind of
communication pattern and could allow to preselect a subset of
ECs, which are worth to consider. We also plan to use existing
frameworks to instrument the application code to log read and
write accesses on memory of interest. If then the instrumented
application is executed with a problem size fitting into the
available memory, we can derive the actual communication
pattern from the generated memory access traces. Under the
prerequisite that the application behaviour does not change
tremendously, if executed with a bigger problem size: This
approach allows to choose the right dwarf respectively EC
based on the prediction of memory accesses, the data affinity
and balancing of induced load.

We focus on an established collection of different commu-
nication patterns (e.g., dense matrix algebra or Monte Carlo
methods), which are the so-called dwarfs [19], [20]. A dwarf
describes a class of kernels with similar communication and
computation patterns and are considered to represent the most
important patterns for science and engineering. Because we
are focusing on applications from this background, we are
confident to cover most problems of our target audience by
using these dwarfs. During the ongoing development, each
dwarf will be evaluated if a) it is not worth to be considered
and should therefore be merged with another dwarf or b) if it is
too complex and should be subdivided. If there are already well-
established MPI communication patterns available for a specific
dwarf (e.g., a MPI-3 RMA implementation of a 2D stencil
solver [21] or an existing framework for multidimensional
stencils [22]), they will be reused.

Another possibility for improving the performance is a
more extensive use of the possibilities of MPI-3. At the
moment we focus on active target communication with fence
synchronisation. Using the other synchronisation and commu-
nication operations provided by MPI-3 should also benefit the
performance, because it allows to improve the replication of
the original communication pattern.

Another point is that in the current version the available
ECs are a pure MPI replacement. At the moment, the available
ECs, which are described in section III-B, remove effectively
thread concurrency and use solely processes instead. But it
depends on the specific application and underlying hardware
if the application would benefit more from a unified MPI
parallelisation model or an MPI+OpenMP-hybrid parallelisation
model [23].

There are three parallel programming models using MPI [18]:
1) Pure MPI (inter-node and intra-node communication)
2) Hybrid of MPI (inter-node communication) and OpenMP

(intra-node communication)
• Masteronly: No MPI calls in OpenMP kernel
• Overlap: MPI calls from (some) OpenMP threads

Therefore, some ECs will make use of a hybrid programming
model by reinserting the original OpenMP kernel again but
this time with consideration of distributed memory (e.g. by
adjusting the ranges), which should result in a significantly
improved performance.

B. I/O Backends

The major goal of CATO is to enable the execution of the
application with problem sizes, which would actually be too
large to be executed on a single node. We look at two scenarios,
in which CATO would allow the execution of bigger input
problems:

In the simple case only the main process loads the initial
data Pini and distributes it afterwards. It is still possible
that the total memory demand M increases over the time of
execution because of additional temporary memory allocations.
For example in case of a Gauss-Seidel iteration scheme (cf.
application in section III-D) it could be implemented by
allocating a temporary second matrix with size Ptmp = Pini,
in which the results of a single iteration are stored - according
to (1) this would roughly double the needed memory space.

M = Pini + Ptmp + const = 2 · Pini + const (1)

Using p nodes to distribute the second auxiliary matrix, this
would allow at most to double the possible size of the input
problem (2).

lim
p→∞

M = lim
p→∞

(
Pini +

Ptmp

p
+ const

)
= Pini + const

(2)
But if each process could directly load its share of the initial

data, this would allow to use bigger problem sizes than the
memory capacity of a single node.

lim
p→∞

M = lim
p→∞

(
Pini

p
+

Ptmp

p
+ const

)
= const (3)

Even though (3) is just a rough simplification and does
not consider that in fact the constant overhead depends on
the process count, it nevertheless demonstrates the potential
of this approach. But this requires to interfere with the load
operation of the initial problem. In the best case this just means
to adjust and distribute allocation calls in the application itself
(cf. section III-D). But in the worst case the application makes
a fall back on an external library like NetCDF to load and
store its input problem. Since we do not want to apply CATO
on the external library, this makes it necessary to handle the
external library calls inside the application. CATO needs to
adjust the arguments passed to them so that each process only



reads or stores a subset of the input problem, from which also
the performance could benefit from. We are currently working
on an implementation of a NetCDF backend for CATO. If
an external library does not receive a pointer to the memory
buffer but does the memory allocation itself, our approach is
not feasible.

V. CONCLUSION

We have implemented a functional prototype of CATO,
which allows to distribute the execution of OpenMP kernels.
Applications, which were limited to shared memory can now
be executed on distributed memory. We already cover several
OpenMP pragmas and runtime functions, especially those
which are quite popular. It depends on the communication
pattern, how well the original speedup can be reproduced. After
the application has been built with CATO, the results of the
evaluation of the horizontal scaling behaviour in section III-D
are promising: Even though the absolute runtime becomes
worse, the trend of speedup stays the same and there is ongoing
work to minimise the gap. And since we did not exhaust our
options to optimise our currently available ECs yet, there is
much more potential for further improvements.

In combination with the results of the reduced memory
consumption per node, this leads to the conclusion that users
may benefit from CATO through the increase of the maximum
problem size if they cope with a longer runtime. CATO allows
to reach problem sizes beyond the possibility of OpenMP-only
code.

As soon as CATO has reached a fairly robust state and
feature set, we will make it available to the public with an
open source license.
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