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Motivation
• Huge data amounts cause high storage costs
– Can be reduced by compression
– Up to 50% with no negative impact on capacity [1]

• CPU/Disk performance gap
– Heavy I/O is a bottleneck
– Use some computational resources to compensate

• High potential for Lustre �le system
– Client-side for higher throughput (less data to transfer)
– Server-side for more capacity (less data to store)
– Overall for higher e�ciency at lower costs

Design
• Transparent compression based on stripes
• Possible on client and/or server, needs integration in backend
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• Current focus on ZFS backend due to existing infrastructure
– Pass through pre-compressed blocks with the logical and physical sizes
– Use internal tree structure with additional metadata per record
– Fits into compressed send/receive interface
– Aiming for compatibility to access data directly from ZFS

• Stripes divided into chunks

– Allows for parallel com-
pression

– Aligning to ZFS records for
better read-ahead

– Reduces read-modify-
write overhead (ZFS-RMW
for every record)
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Challenges
• Read-ahead
Problem
– Naive compression causes gaps in continuous data stream
– Read-ahead can not predict next chunk
Solution
– Gaps only logically; block structure continuous within ZFS-tree
– Predicting data by physical size while showing logical size outwards

• Read-modify-write
Problem
– Can expand to read-decompress-modify-compress-write
– A�ects the complete compressed block (stripe)
– Decompression, copy and moving of originally una�ected data
Solution
– Intelligent decisions when and where to compress (e.g. deactivate for
random access or involve server for de-/compression)

– Smaller independent chunks reduce negative impact on adjacent data
within a stripe (decompression of a chunk, but not complete stripe)

– Due to tree stuctured blocks no expensive moving of neighbored blocks

Evaluation
• Suitable compression algo-
rithms (speed in MB/s) [1]
– Compression (c.) speed
faster than some networks

– Very fast decompression (d.)

algo c.speed d.speed ratio
lz4 1,796 5,178 1.923

lz4fast 2,945 6,460 1.825
lz4hc 258 4,333 2.0
zstd 658 2,019 2.326

• Userspace simulation
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write - file-per-process, 10 clients, 1 MiB stripe, GBit-Ethernet 

lz4 single thread compression
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– Compression enables higher e�ective network throughput
– Read-ahead problems with naive compression
– Many small blocks with gaps drop performance
– Single thread compression insu�cient for fast networks
* Simpli�ed calculations of pro�tability depending on network speed

c.speed− c.speed
c.ratio > network speed⇒ c.speed >

network speed
1− 1

c.ratio

* Example: single thread lz4fast non-overlapping compression with
network data rate of 1,500 MB/s

2, 945 MB/s > 1, 500 MB/s
1− 1

1.825
⇒ 2, 945 MB/s 6> 3318 MB/s

• Acceptable ratios and times with smaller blocks
– ZFS records (min. 128KB) are still suitable for e�cient compression
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Future Work
• ZFS/Lustre integration (interface, chunk metadata, bu�er usage)
• Bene�ts for other projects
– Update lz4 and introduce new lz4fast in kernel (4.11) and ZFS
– Extend ZFS compression features

• Adaptive compression, dynamic decisions
– Consider static and dynamic system metrics (system con�g., load, etc.)
– High-level user hints via ladvice (access patterns, data structure, etc.)
– Internal decision possible for each chunk for highest e�ciency
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