Enhanced Adaptive CompressioninLustre pr

Anna Fuchs, Michael Kuhn, Julian Kunkel, Thomas Ludwig ™

anna.fuchs@informatik.uni-hamburg.de

2% Universitat Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

https://wr.informatik.uni-hamburg.de/research/projects/ipcc-1/

MOTIVATION

- Huge data amounts cause high storage costs

- Can be reduced by compression
- Up to 50% with no negative impact on capacity [1]

- CPU/Disk performance gap

eavy /0 is a bottleneck
se some computational resources to compensate

Igh potential for Lustre file system

— Client-side for higher throughput (less data to transfer)
— Server-side for more capacity (less data to store)
- Overall for higher efficiency at lower costs

DESIGN

 Transparent compression based on stripes
- Possible on client and/or server, needs integration in backend

Lustre client server server
I/0O-stack only decompress recompress

application

l write T read

Client . [ . [ . . uncompressed

T v v ! V!

o0 oo op EHewe
v ! v 1 v E recompressed
§ D B0 ™I

HE EHE EE
B ¢ ¢
L

network

Current focus on ZFS backend due to existing infrastructure
- Pass through pre-compressed blocks with the logical and physical sizes

- Use Internal tree structure with additional metadata per record

- Fits into compressed send/receive interface
- Aiming for compatibility to access data directly from ZFS

Stripes divided into chunks stripe
-

- Allows for parallel com-

pression B BN N e
. . compress

— Aligning to ZFS records for -l _______ -l __________ | -l ___________ _l

better read-ahead e L
AW l write l <

- Reduces read-modify-
write overhead (ZFS-RMW
for every record)

CHALLENGES

Read-ahead
Problem

- Nalve compression causes gaps In continuous data stream
- Read-ahead can not predict next chunk

Solution

- Gaps only logically; block structure continuous within ZFS-tree
- Predicting data by physical size while showing logical size outwards

Read-modify-write
Problem

- Can expand to read-decompress-modify-compress-write

- Affects the complete compressed block (stripe)

- Decompression, copy and moving of originally unaffected data
Solution

— Intelligent decisions when and where to compress (e.g. deactivate for
random access or involve server for de-/compression)

- Smaller independent chunks reduce negative impact on adjacent data
within a stripe (decompression of a chunk, but not complete stripe)

- Due to tree stuctured blocks no expensive moving of neighbored blocks

EVALUATION

Suitable compression algo- [ algo | c.speed [ d.speed | ratio
rithms (speed in MB/s) [1] 2z 1796 5178 | 1.923

— Compression (c.) speed | lzagfast | 2,945 6,460 | 1.825
faster than some networks lzehce 258 4,333 2.0

- Very fast decompression (d.) | Zstd 658 2,019 | 2.326

» Userspace simulation

write - file-per-process, 10 clients, 1 MiB stripe, GBit-Ethernet
|z4 single thread compression
1600 | ‘ ‘

read - single stream, 1 MiB stripe

c.ratio 1.85
c.ratio 1.85 effective complete m—

I ffecti real decompression
1400 197 1. srective 1400 | | | 1400
1.86 real A ]

1.85 I 1.86

network 1200 - network 1.86 1 1200

1200

=
o
o
o

1000 | { 1000

800 | 1 800

600 | 1 600
400 | 1400
: L8 :

200 | 1 200
- 1.8 1'8 i
o _

2 4 8

0.5 1

800 |

Throughput [MiB/s]
Throughput [MiB/s]
Time [s]

600 |

400 |

200 |

Blocksize [MiB] for transfer and compression

compression level

- Compression enables higher effective network throughput
- Read-ahead problems with naive compression
- Many small blocks with gaps drop performance

- Single thread compression insufficient for fast networks
* Simplified calculations of profitability depending on network speed

c.speed > network speed = c.speed > network speed

: 1
c.ratio L c.ratio

c.speed

* Example: single thread lz4fast non-overlapping compression with
network data rate of 1,500 MB/s

1,500 MB/s
2,945 MB/s > ‘:’ 1 /

1.825

= 2,945 MB/s *# 3318 MB/s

- Acceptable ratios and times with smaller blocks

— ZFS records (min. 128KB) are still suitable for efficient compression

Different scientific data sets (2MiB) compressed with Iz4fast-17 single thread
Results normalized to 64KiB values

de-/compression time ——
compression ratio —a— 115
- - ]
] ()
_ 411 E
o /r I — ] =
\. _ .

\./

1.15 |

=
=

Compression ratio
=

Y

B

T
"
»

1.05 — . A

0.95 &

64 128 256 512 1024 2048

Blocksize in KiB

FUTURE WORK

- ZFS/Lustre integration (interface, chunk metadata, buffer usage)
- Benefits for other projects

- Update lz4 and introduce new lz4fast in kernel (4.11) and ZFS

- Extend ZFS compression features

- Adaptive compression, dynamic decisions

— Consider static and dynamic system metrics (system config., load, etc.)
— High-level user hints via ladvice (access patterns, data structure, etc.)
- Internal decision possible for each chunk for highest efficiency

REFERENCES

[1] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Data Compression for Climate Data.
Supercomputing Frontiers and Innovations, pages 75-94, 06 2016.

ACKNOWLEDGEMENTS

We thank Intel Corporation for their support and funding our Intel Parallel Computing Center to integrate enhanced adaptive compression into Lustre.



