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MOTIVATION

- Huge data amounts cause high storage costs

- Can be reduced by compression
- Up to 50% with no negative impact on capacity [1]

- CPU/Disk performance gap

eavy /0 is a bottleneck
se some computational resources to compensate

Igh potential for Lustre file system

— Client-side for higher throughput (less data to transfer)
— Server-side for more capacity (less data to store)
- Overall for higher efficiency at lower costs

DESIGN

 Transparent compression based on stripes
- Possible on client and/or server, needs integration in backend
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Current focus on ZFS backend due to existing infrastructure
- Pass through pre-compressed blocks with the logical and physical sizes

- Use Internal tree structure with additional metadata per record

- Fits into compressed send/receive interface
- Aiming for compatibility to access data directly from ZFS

Stripes divided into chunks stripe
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- Reduces read-modify-
write overhead (ZFS-RMW
for every record)

CHALLENGES

Read-ahead
Problem

- Nalve compression causes gaps In continuous data stream
- Read-ahead can not predict next chunk

Solution

- Gaps only logically; block structure continuous within ZFS-tree
- Predicting data by physical size while showing logical size outwards

Read-modify-write
Problem

- Can expand to read-decompress-modify-compress-write

- Affects the complete compressed block (stripe)

- Decompression, copy and moving of originally unaffected data
Solution

— Intelligent decisions when and where to compress (e.g. deactivate for
random access or involve server for de-/compression)

- Smaller independent chunks reduce negative impact on adjacent data
within a stripe (decompression of a chunk, but not complete stripe)

- Due to tree stuctured blocks no expensive moving of neighbored blocks

EVALUATION

Suitable compression algo- [ algo | c.speed [ d.speed | ratio
rithms (speed in MB/s) [1] 2z 1796 5178 | 1.923

— Compression (c.) speed | lzagfast | 2,945 6,460 | 1.825
faster than some networks lzehce 258 4,333 2.0

- Very fast decompression (d.) | Zstd 658 2,019 | 2.326

» Userspace simulation
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- Compression enables higher effective network throughput
- Read-ahead problems with naive compression
- Many small blocks with gaps drop performance

- Single thread compression insufficient for fast networks
* Simplified calculations of profitability depending on network speed

c.speed > network speed = c.speed > network speed

: 1
c.ratio L c.ratio

c.speed

* Example: single thread lz4fast non-overlapping compression with
network data rate of 1,500 MB/s

1,500 MB/s
2,945 MB/s > ‘:’ 1 /

1.825

= 2,945 MB/s *# 3318 MB/s

- Acceptable ratios and times with smaller blocks

— ZFS records (min. 128KB) are still suitable for efficient compression

Different scientific data sets (2MiB) compressed with Iz4fast-17 single thread
Results normalized to 64KiB values
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FUTURE WORK

- ZFS/Lustre integration (interface, chunk metadata, buffer usage)
- Benefits for other projects

- Update lz4 and introduce new lz4fast in kernel (4.11) and ZFS

- Extend ZFS compression features

- Adaptive compression, dynamic decisions

— Consider static and dynamic system metrics (system config., load, etc.)
— High-level user hints via ladvice (access patterns, data structure, etc.)
- Internal decision possible for each chunk for highest efficiency
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