
EnhancedAdaptiveCompression inLustre
Anna Fuchs, Michael Kuhn, Julian Kunkel, Thomas Ludwig

anna.fuchs@informatik.uni-hamburg.de

https://wr.informatik.uni-hamburg.de/research/projects/ipcc-l/

Motivation
• Huge data amounts cause high storage costs
– Can be reduced by compression
– Up to 50% with no negative impact on capacity [1]

• CPU/Disk performance gap
– Heavy I/O is a bottleneck
– Use some computational resources to compensate

• High potential for Lustre �le system
– Client-side for higher throughput (less data to transfer)
– Server-side for more capacity (less data to store)
– Overall for higher e�ciency at lower costs

Design
• Transparent compression based on stripes
• Possible on client and/or server, needs integration in backend

I/O-stack

uncompressed

compressed

write read

recompressed

Client

OSS

application

network

client
only

server
decompress

server
recompress

Lustre

• Current focus on ZFS backend due to existing infrastructure
– Pass through pre-compressed blocks with the logical and physical sizes
– Use internal tree structure with additional metadata per record
– Fits into compressed send/receive interface
– Aiming for compatibility to access data directly from ZFS

• Stripes divided into chunks

– Allows for parallel com-
pression

– Aligning to ZFS records for
better read-ahead

– Reduces read-modify-
write overhead (ZFS-RMW
for every record)

compress

logical

stripe

physical

write

Challenges
• Read-ahead
Problem
– Naive compression causes gaps in continuous data stream
– Read-ahead can not predict next chunk
Solution
– Gaps only logically; block structure continuous within ZFS-tree
– Predicting data by physical size while showing logical size outwards

• Read-modify-write
Problem
– Can expand to read-decompress-modify-compress-write
– A�ects the complete compressed block (stripe)
– Decompression, copy and moving of originally una�ected data
Solution
– Intelligent decisions when and where to compress (e.g. deactivate for
random access or involve server for de-/compression)

– Smaller independent chunks reduce negative impact on adjacent data
within a stripe (decompression of a chunk, but not complete stripe)

– Due to tree stuctured blocks no expensive moving of neighbored blocks

Evaluation
• Suitable compression algo-
rithms (speed in MB/s) [1]
– Compression (c.) speed
faster than some networks

– Very fast decompression (d.)

algo c.speed d.speed ratio
lz4 1,796 5,178 1.923

lz4fast 2,945 6,460 1.825
lz4hc 258 4,333 2.0
zstd 658 2,019 2.326

• Userspace simulation

0

200

400

600

800

1000

1200

1400

1600

1.91 1.86
1.85

2.12

2.18

2.19

1.85

network

c.ratio

effective

real

T
h
ro

u
g

h
p

u
t 

[M
iB

/s
]

write - file-per-process, 10 clients, 1 MiB stripe, GBit-Ethernet 

lz4 single thread compression

0

0.5 1 2 4 8
0

T
h
ro

u
g

h
p

u
t 

[M
iB

/s
]

200

400

600

800

1000

1200

1400

200

400

600

800

1000

1200

1400

Ti
m

e
 [

s]

complete

decompression

network

1.85c.ratio

effective

real

1.86

1.87

1.85
1.83

1.86

read - single stream, 1 MiB stripe

Blocksize [MiB] for transfer and compression
fa

st
-1

fa
st

-8

fa
st

-1
7

hc
-1

hc
-4

hc
-9

no
ne

compression level

– Compression enables higher e�ective network throughput
– Read-ahead problems with naive compression
– Many small blocks with gaps drop performance
– Single thread compression insu�cient for fast networks
* Simpli�ed calculations of pro�tability depending on network speed

c.speed− c.speed
c.ratio > network speed⇒ c.speed >

network speed
1− 1

c.ratio

* Example: single thread lz4fast non-overlapping compression with
network data rate of 1,500 MB/s

2, 945 MB/s > 1, 500 MB/s
1− 1

1.825
⇒ 2, 945 MB/s 6> 3318 MB/s

• Acceptable ratios and times with smaller blocks
– ZFS records (min. 128KB) are still suitable for e�cient compression

0.95

1

1.05

1.1

1.15

64 128 256 512 1024 2048

0.9

1

1.1

1.2

1.3

Different scientific data sets (2MiB) compressed with lz4fast-17 single thread

Results normalized to 64KiB values

Blocksize in KiB

C
o
m

p
re

ss
io

n
 r

a
ti

o

Ti
m

e

de-/compression time
compression ratio

Future Work
• ZFS/Lustre integration (interface, chunk metadata, bu�er usage)
• Bene�ts for other projects
– Update lz4 and introduce new lz4fast in kernel (4.11) and ZFS
– Extend ZFS compression features

• Adaptive compression, dynamic decisions
– Consider static and dynamic system metrics (system con�g., load, etc.)
– High-level user hints via ladvice (access patterns, data structure, etc.)
– Internal decision possible for each chunk for highest e�ciency

References
[1] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Data Compression for Climate Data.

Supercomputing Frontiers and Innovations, pages 75–94, 06 2016.

Acknowledgements
We thank Intel Corporation for their support and funding our Intel Parallel Computing Center to integrate enhanced adaptive compression into Lustre.


