
Towards Performance Portability for Atmospheric and Climate Models with the
GGDML DSL

Nabeeh Jum’ah1, Julian Kunkel2, Zängl Günther3, Hisashi Yashiro4, Thomas Dubos5, and Yann Meurdesoif6

1 Universität Hamburg Jumah@informatik.uni-hamburg.de, 2 Deutsches Klimarechenzentrum kunkel@dkrz.de, 3 Deutscher Wetterdienst, 4 RIKEN Advanced Institute for Computational Science, 5 École
Polytechnique, 6 Laboratoire des sciences du climat et de l’environment

ABSTRACT
Demand for high-performance computing is in-
creasing in atmospheric and climate sciences,
and in natural sciences in general. Unfortu-
nately, automatic optimizations done by com-
pilers are not enough to make use of target
machines’ capabilities. Manual code adjust-
ments are mandatory to exploit hardware capa-
bilities. However, optimizing for one architec-
ture, may degrade performance for other archi-
tectures. This loss of portability is a challenge.

The contributions of this poster are:

• Introduction of a DSL for Icosahedral models
• Evaluation of code-reduction opportunity

In this poster, we focus on code quality and ben-
efit from the developer perspective (not on per-
formance).

GOALS
Achieve high performance, portability and
maintainability through a DSL and a lightweight
compilation infrastructure fostering separation
of concerns:

• Scientists from domain science provide the
logic of the software to solve the problem.
They don’t need to provide any optimization
details.

• The configuration details related to platform-
dependent implementation are provided by
scientific programmers. They provide the
compilation tool the needed configuration to
generate architecture-optimized code.

Fig. 1: Seperation of Concerns

APPROACH
• We started with the code of the three models;

DYNAMICO, ICON, and NICAM.
• We adopted co-design approach that included

domain scientists, each of whom is experi-
enced with one of the models

• We Identified the most compute intensive
parts of the code as they are the critical pieces
and hence the key to achieve performance.

• An abstraction has been extracted by recog-
nizing the domain concepts and operations in
these compute intensive code parts. During
this process, we tried to identify commonali-
ties in the three models and create a represen-
tation that expresses all three models. Tech-
nical requirements for performance were con-
sidered during this abstraction process.

• We rewrote codes from the models accord-
ingly to the suggestions.

• We discussed with scientists, who are experts
with those models, the abstraction levels and
code examples.

DESIGN OVERVIEW
• We introduce GGDML (General Grid Defini-

tion and Manipulation Language) and exam-
ine the approach for icosahedral-grid based
climate & atmospheric models. GGDML is
a domain-specific language (DSL) that fosters
separation of concerns between domain scien-
tists and computer scientists.

• Our DSL extends Fortran language with con-
cepts from domain science, apart from any
technical descriptions such as hardware based
optimization.

• The main concept is based on grids, and offers
ways to define and manipulate grids and grid-
bound variables.

• Fortran code extended with novel semantics
from GGDML goes through the meta-DSL
based compilation procedure. This generates
high performance code – aware of hardware
features, based on provided configurations.

SOURCE-TO-SOURCE TRANSLATION
A lightweight translation tool –that ships with code repositories and integrates into build systems–
translates model code that uses GGDML extensions into a target-architecture-optimized code (or in-
termediate language).

Fig. 2: Translation Process

RESULTS
To evaluate the DSL, we took two relevant kernels from each of the three models, and analyzed the
achieved code reduction. An overview of the results is shown in the table and figure below. The
numbers demonstrate the impact on code length when porting code to GGDML.

lines (LOC) words characters
Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
percentage 30.05% 47.20% 45.04%

ICON 1
ICON 2

NICAM 1
NICAM 2

DYN. 1
DYN. 2

0

20

40

60

80

Lin
es

existing code
with GGDML

• In average, we cut down the LOC to less than one third (30%) of the original code. Better reductions
are achieved in stencil codes (NICAM example No.2, reduced to 12.22% of the original LOC).

• Influence on readability and maintainability: Reducing the important code metrics like code dupli-
cation, WTF/Minute – in code review, in some cases, boundary conditions could be removed thus
reducing the cyclomatic complexity.

• Code reduction reduces development costs. By applying COCOMO, we estimate the benefit to be:

Software project DSL? Effort
Applied

Dev. Time
(months)

People
required

dev. costs
(M€)

Semi-detached without 2462 38.5 64 12.3
with 1133 29.3 39 5.7

Organic without 1295 38.1 34 6.5
with 625 28.9 22 3.1

PERFORMANCE
• Carried out experiments on a prototype application, small kernels with a two-dimensional grid,

with two grid-bound variables.
• Fed source code written with C extended with DSL.
• Used two configuration files.
• Switching memory layout (AoS to SoA) yields double (2x) the performance.
• Inlining and loop fusion yields 10% of the doubled performance as additional enhancement.
• This result is comparable to the performance of a hand-tuned code version of the application.
• Machine: Intel(R) Core(TM) i7-6700 CPU Skylake
• Compiler: GCC 5.4 with -O3 optimization option was used to compile all codes

CODE EXAMPLE
The following example demonstrates the use of GGDML in the DYNAMICO model.

DO l=ll_begin,ll_end
!DIR$ SIMD

DO ij=ij_begin,ij_end
berni(ij,l) = .5*(geopot(ij,l)+geopot(ij,l+1)) + 1/(4*Ai(ij)) *

(le(ij+u_right)*de(ij+u_right)*u(ij+u_right,l)**2 &
+le(ij+u_rup) *de(ij+u_rup) *u(ij+u_rup,l)**2 &
+le(ij+u_lup) *de(ij+u_lup) *u(ij+u_lup,l)**2 &
+le(ij+u_left) *de(ij+u_left) *u(ij+u_left,l)**2 &
+le(ij+u_ldown)*de(ij+u_ldown)*u(ij+u_ldown,l)**2 &
+le(ij+u_rdown)*de(ij+u_rdown)*u(ij+u_rdown,l)**2)

ENDDO
ENDDO

GGDML version of the code above

FOREACH cell IN grid
berni(cell) = .5*(geopot(cell)+geopot(cell%above)) + 1/(4*Ai(cell%ij)) *
REDUCE(+, N={1..6} le(cell%neighbour(N)%ij)*de(cell%neighbour(N)%ij)*u(cell%neighbour(N))**2)

END FOREACH

LANGUAGE EXTENSIONS
Offer abstract grid concepts (e.g. cell, edge, ver-
tex) especially for icosahedral models:

• Embedded into a general-purpose language
• Definition of grids

– Various shapes, e.g., triangular, hexagonal

• Variable definition on grid elements
• Reference variables by grid elements

– Named element relationships

* to reference cell edge

* to reference cell above/below

* to reference a neighbour cell

* ...

• Element ranges traversal

– Specify/modify dimensions of ranges
– Update data of variables while traversing

• Reduction operator

The compiler infrastructure is flexible to imple-
ment other language extensions on demand.

SUMMARY
• We introduce GGDML, a Fortran language

extension to improve readability and perfor-
mance portability.

• We adopt collaborative bottom-up develop-
ment of GGDML with re-engineered concepts
top-down to provide a consistent perspective
from a domain science point of view.

• Hardware-related information are eliminated
from a code written with GGDML.

• GGDML reduces code size significantly and
conforms to presumed requirements.

• We introduce also meta-compilation with a
source-to-source translation tool.

• Compilation configurations guide the tool
to generate machine-dependent optimizations
such as memory layout.

• Specialized scientific programmers provide
translation configurations to get performance.

FUTURE WORK
• Extend and improve GGDML.

• Enhance translation tools.

• Support various general-purpose languages.

• Support further optimization techniques.

• Furthermore, we aim to identify and ana-
lyze best-practices and coding strategies for
achieving performance on different platforms.

• Support profile-guided optimization to utilize
the flexibility of the DSL semantics.

ACKNOWLEDGEMENTS
This work was supported in part by the German
Research Foundation (DFG) through the Priority
Programme 1648 “Software for Exascale Com-
puting” (SPPEXA) (GZ: LU 1353/11-1).

