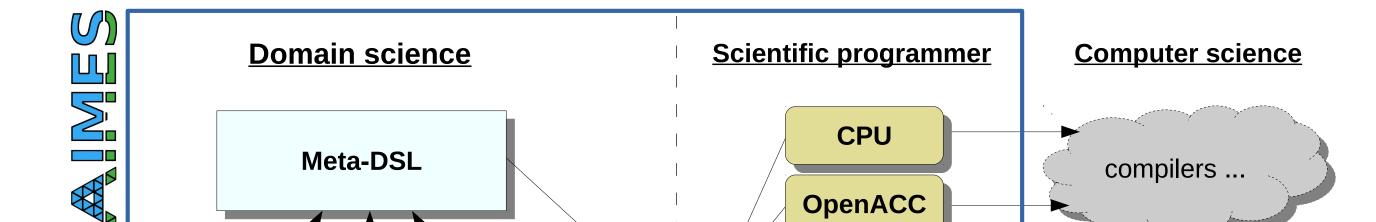
ADVANCED COMPUTATION AND I/O METHODS FOR EARTH-SYSTEM SIMULATIONS

Julian M. Kunkel, Thomas Ludwig, Thomas Dubos, Naoya Maruyama, Takayuki Aoki, Günther Zängl, Hisashi Yashiro, Ryuji Yoshida, Hirofumi Tomita, Masaki Satoh, Yann Meurdesoif, Nabeeh Jum'ah, Anastasiia Novikova (**Contact: kunkel@dkrz.de**)

Motivation

- > Several groups work on icosahedral-grid based climate/weather models
- > Obstacles for Exascale simulations but also on small scale:
- > Code is very complex and difficult to refactor
- > Climate prediction creates huge data volumes

Limitations of general-purpose programming languages


- > Semantics and syntax restrict programmers productivity
- > Performance is hardly portable between architectures

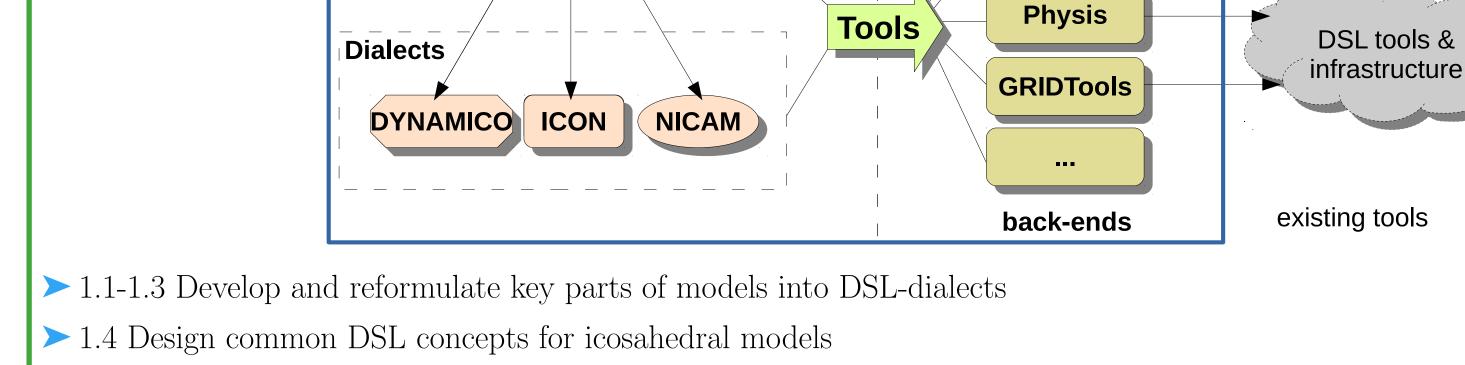
Existing Domain-Specific Languages

Scientific Work Packages: Objectives and Tasks

WP 1: Towards higher-level code design

- > Foster separation of concerns: Domain scientists, scientific programmer and computer scientists
 - -High level of abstraction, reflects domain science concepts
- Independence of hardware-specific features, e.g. memory-layout
- Convertible into existing languages and DSLs

- > May create optimized code for different architectures
- > Technical languages with limited relation to scientific domain
- > Typically require language-specific paradigm shift for scientists
- > Unclear future of the framework/tool


Existing scientific file formats

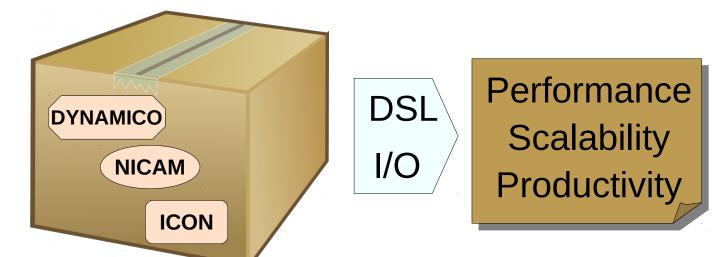
- Metadata for icosahedral data is not standardized
- > Difficult to achieve good performance
- > Pre-defined compression schemes achieve suboptimal ratio

Goals

Address issues of icosahedral earth-system models

- > Enhance programmability and performance-portability
- > Overcome storage limitations
- > Provide a common benchmark for icosahedral models

> 1.5 Develop source-to-source translation tool and mappings


WP 2: Massive I/O

- > 2.1 Optimize file formats for icosahedral data
- > 2.2 Data reduction concepts
- > 2.3 API for user-defined variable accuracy
- > 2.4 Identifying required variable accuracy
- > 2.5 Lossy compression

Precipitation Methodology Data quality Absolute/relative error, properties I/O Interface NetCDF HDF5 **Compression scheme**

- > 3.1 Selection of representative test cases
- > 3.2 Extraction of simple kernels
- > 3.3 Common benchmark package/mini-IGCMs¹
- > 3.4 Benefit of the DSL for kernels/mini-IGCMs
- > 3.5 Estimating benefit for full-featured models

WP 3: Evaluation

Funded partners

Collaboration

Thomas Ludwig (Universität Hamburg) Thomas Dubos (Institut Pierre Simon Laplace) Naoya Maruyama (RIKEN) Takayuki Aoki (Tokio Institute of Technology)

Collaboration partners

- DKRZ (I/O, DSL)
- DWD (ICON, DSL, I/O)
- University of Exeter (Mathematic aspects in the DSL)
- CSCS (GPU/ICON, GRIDTool, compression)
- Intel (DSL-backend optimization for XeonPhi, CPU)
- NVIDIA (DSL-backend optimization for GPU)
- The HDF Group $(I/O, unstructured \ data, \ compr.)$
- NCAR (MPAS developers, forth icosahedral model)
- Bull
- Cray

Information exchange, participation in workshops...

> 3.6 I/O advances for full models

Models

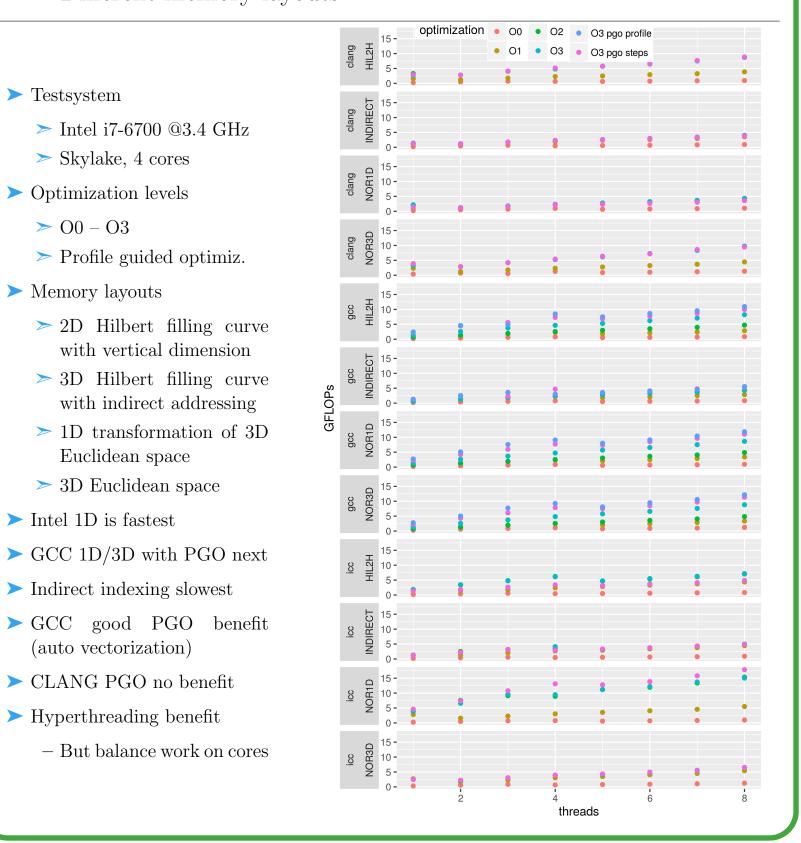
ICON

DYNAMICO

NICAM

DSL Tools

Source-to-source translation


- ➤ Translates GGDML code into
- > architecture-optimized code OR intermediate language
- > Light-weight easily maintainable translation tool, shipped with code
- > Integratable into Build-Systems
- > Offers a configurable translation procedure
- > Initial prototype with limited functionality is complete

Compilation profiling

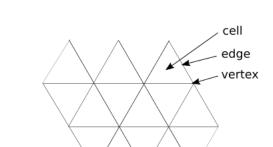
> Learns optimal compilation options for each repository file > Minimizes time of repository builds while keeping code performance

Initial results (single node)

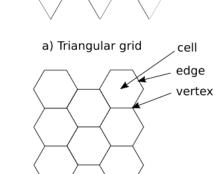
- > Performance and compilation procedures have been explored
- > Different compilers (Intel, GCC, CLang)
- > Different compilation options
- > Different memory layouts

Compression

- > Development of Scientific Compression Library https://github.com/JulianKunkel/scil
- > Users define the required accuracy > In terms of relative/absolute/precision ... > In terms of required performance > The library picks a fitting algorithm
- > Integration into HDF5 / NetCDF4


Extending NICAM with a high-levle framework

► GridTools


- > C++ template framework for weather and climate models
- > Architecture-indenpendent programming interface for performance and portability

GGDML Domain-Specific Language

> GGDML: General Grid Definition and Manipulation Language > Abstracted scientific-domain based constructs for:

- > Data types reflecting "grid" concepts
- > Variable Declaration & allocation on cells, edges and vertices
- > Iterators to traverse and update variables
- > Named neighbours in (triangular/hexagonal) grids
- \triangleright Developed in co-design with domain scientists

Fortran code (dynamico) and GGDML version

DO l=ll_begin,ll_end !DIR\$ SIMD DO ij=ij_begin,ij_end berni(ij,l) = .5*(geopot(ij,l)+geopot(ij,l+1)) + 1/(4*Ai(ij)) * (le(ij+u_right)*de(ij+u_right)*u(ij+u_right,l)**2 & +le(ij+u_rup) *de(ij+u_rup) *u(ij+u_rup,1)**2 & +le(ij+u_lup) *de(ij+u_lup) *u(ij+u_lup,l)**2 & +le(ij+u_left) *de(ij+u_left) *u(ij+u_left,1)**2 & +le(ij+u_ldown)*de(ij+u_ldown)*u(ij+u_ldown,l)**2 & +le(ij+u_rdown)*de(ij+u_rdown)*u(ij+u_rdown,1)**2) ENDDO ENDDO

GGDML version of the code above

FOREACH cell IN grid

berni(cell) = .5*(geopot(cell)+geopot(cell%above)) + 1/(4*Ai(cell%ij)) * REDUCE(+, $N = \{1...6\}$

le(cell%neighbour(N)%ij)*de(cell%neighbour(N)%ij)*u(cell%neighbour(N))**2) END FOREACH

> Evaluating GridTools as a programming framework for NICAM

> Successfully ported representative NICAM stencil kernels with comparable performance as handtuned implementations

Acknowledgement

This work was supported by the German Research Foundation (DFG) through the Priority Programme 1648 "Software for Exascale Computing" (SPPEXA).

https://wr.informatik.uni-hamburg.de/research/projects/aimes/start