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Abstract

The performance of parallel distributed file systems suf-
fers from many clients executing a large number of opera-
tions in parallel, because the I/O subsystem can be easily
overwhelmed by the sheer amount of incoming I/O opera-
tions.

Many optimizations exist that try to alleviate this prob-
lem. Client-side optimizations perform preprocessing to
minimize the amount of work the file servers have to do.
Server-side optimizations use server-internal knowledge to
improve performance.

The HDTrace framework contains components to simu-
late, trace and visualize applications. It is used as a testbed
to evaluate optimizations that could later be implemented
in real-life projects.

This paper compares existing client-side optimizations
and newly implemented server-side optimizations and eval-
uates their usefulness for I/O patterns commonly found
in HPC. Server-directed I/O chooses the order of non-
contiguous I/O operations and tries to aggregate as many
operations as possible to decrease the load on the I/O sub-
system and improve overall performance.

The results show that server-side optimizations beat
client-side optimizations in terms of performance for many
use cases. Integrating such optimizations into parallel dis-
tributed file systems could alleviate the need for sophis-
ticated client-side optimizations. Due to their additional
knowledge of internal workflows server-side optimizations
may be better suited to provide high performance in gen-
eral.

1. Introduction

Parallel distributed file systems are designed to handle a
large number of clients and deliver high performance. How-
ever, due to their distributed design most operations are ex-
pensive to perform, which in turn can seriously impact over-
all performance. This is especially true for large amounts of

small requests. For this reason new algorithms to efficiently
perform I/O on these file system have emerged and a multi-
tude of optimizations are available to improve performance
even further.

These approaches can be basically classified into two
categories. Some approaches focus heavily on the client,
trying to minimize the work the servers have to do. For ex-
ample, the clients’ RAM can be used to cache and batch
I/O operations to reduce the load on the servers. Other ap-
proaches do not perform preprocessing on the clients and
let the servers handle all the work themselves. The servers
can then employ their own optimizations.

2. State of the Art and Related Work

Traditionally, sequential programs access data in con-
tiguous regions, identified by an offset and a size. Non-
contiguous I/O enables applications to access several of
these regions without actually requesting each of them sep-
arately. This can significantly reduce the overhead intro-
duced by network latency, because multiple operations can
be batched together. Using non-contiguous I/O to perform
such operations may also give the underlying file system
– or a high-level I/O library – the opportunity to optimize
these kinds of operations.

Collective I/O can be used to explicitly relate I/O opera-
tions performed by multiple clients with each other. For ex-
ample, when using individual I/O the operations performed
by one client may have already started or even finished by
the time the second client’s operations are received by the
file system. When using collective I/O, clients can collabo-
rate, allowing the I/O library to perform optimizations that
are impossible to do with individual I/O.

The Two-Phase protocol is an optimization for collec-
tive I/O implemented in ROMIO, which allows clients to
collaborate during I/O. It uses separate communication and
I/O phases to optimize I/O accesses of multiple clients, but
introduces additional communication overhead. The im-
plementation in ROMIO mainly focuses on making the ac-
cesses contiguous.



Simpler client-side optimizations like data sieving and
collective I/O are presented in [7]. The usefulness of non-
contiguous and collective I/O is described in [8]. Addition-
ally, the four levels of I/O needs in MPI-I/O are introduced.
Increasing MPI-I/O levels allow for more advanced opti-
mizations. In [1], ROMIO is extended to use the list I/O
interface of PVFS1 to provide better performance for non-
contiguous I/O.

A refined and extended version of the Two-Phase pro-
tocol called Multiple-Phase Collective I/O is presented in
[5, 6]. The communication phase is split up in several steps,
in which pairs of clients communicate with each other in
parallel. These multiple steps are used to progressively in-
crease the locality of the data, which increases the perfor-
mance of the subsequent I/O phase.

An alternative to client-side optimizations – in particu-
lar, to the Two-Phase protocol – is presented in [2]. Disk-
directed I/O is used to optimize the data flow on the file
server itself, that is, optimizations are no longer done by
the clients. In the presented scheme, the clients still need
to issue a collective call. Once all clients started the collec-
tive operation, one of them sends the full non-contiguous
requests to the I/O servers. Each server sorts contiguous ac-
cesses of all clients, processes them sequentially and sends
the results back to the client that started the operation. This
technique has the benefit that the file servers can use infor-
mation about their physical disk layout to optimize accesses
and also avoids the communication and computation over-
head of the clients caused by the Two-Phase protocol. In
contrast, our server-directed I/O allows clients to perform
non-contiguous I/O independently. Additionally, the server
aggregates multiple requests into larger access for the I/O
subsystem.

Our goal is to analyze whether comparable performance
results can be achieved by avoiding complex client-side op-
timizations and moving the necessary logic into the file sys-
tem itself.

3. Software Environment

HDTrace is a framework containing all components nec-
essary to simulate, trace and visualize applications. The
framework is described here briefly.

The simulator PIOsimHD – part of HDTrace – allows
simulating arbitrary network topologies, servers and client
applications. PIOsimHD is designed to run programs con-
forming to the MPI standard, including asynchronous com-
munication and collective operations. One of its goals is to
allow easy and fast prototyping of new algorithms for I/O
optimization. Simple applications can be implemented di-
rectly within PIOsimHD for fast testing of new algorithms.

1PVFS: http://www.pvfs.org/

All optimizations presented in this paper are implemented
in the simulator to evaluate their theoretical benefits. These
optimizations are not dependent on any specific project en-
vironment and can serve as a starting point for adoption of
promising optimizations into real-life projects. This helps
avoiding the overhead of implementing several complex op-
timization variants in even more complex real-life projects
when only the most promising one is really needed.

3.1. PIOsimHD I/O Model

An abstract parallel distributed file system defines how
the interaction between clients and servers takes place. File
data is partitioned among all servers as defined by a se-
lectable distribution function. Metadata operations are not
considered yet. Data is read and written from disk in chunks
with a maximum size of the I/O granularity, which defaults
to 10 MiB. Data sent across the network is split up into
smaller chunks to accommodate the network granularity,
which in turn defaults to 100 KiB. The cache layer explic-
itly manages the free memory as a cache. Non-contiguous
I/O requests are explicitly supported.

Clients and servers interact in a similar fashion to the
PVFS model: In the write path, a client announces a write
operation to the server and then starts to transfer all data.
The server acknowledges the completion of the write oper-
ation when it is finished. File sizes are updated once a write
operation finishes. The network flow to a server is stopped
if there is no more cache available. Consequently, the client
write activity is stopped if the I/O subsystem can not write
back data fast enough and thus fills up the cache. Whenever
a data packet is received on the server, it is forwarded to
the cache layer. It is important to note that the effective I/O
granularity is equal to the network granularity if the cache
layer does not combine I/O requests.

In the read path, the client posts a non-contiguous re-
quest to all servers. This information is provided com-
pletely to the cache layer. The cache layer of a server can
then decide in which order the operations are to be per-
formed. Data is then read from disk. The I/O granularity
limits the maximum size per operation. Once data is ready,
it will be transferred to the client. Note that a buffer is man-
aged to store the data until the transfer is completed.

3.2. Cache Layers

The following cache layers are currently implemented in
PIOsimHD:

The NoCache cache layer does no caching at all. All
incoming I/O operations are forwarded directly to the I/O
subsystem. Among other things, this means that write op-
erations take as long as the I/O subsystem needs to actually

http://www.pvfs.org/


write out the data to the underlying storage devices. Ad-
ditionally, read operations are preferred by the NoCache
cache layer – and, in fact, by all other cache layers – when
possible. Since the NoCache cache layer does not combine
I/O operations the maximum operation size is 100 KiB due
to the network granularity.

The SimpleWriteBehindCache cache layer does
rudimentary caching. Incoming write operations are queued
in the server’s RAM to be written out in a background
thread. This technique is called write-behind. As opposed
to the NoCache cache layer this means that write oper-
ations do not block the calling client and return immedi-
ately once the data is received by the servers. The ac-
tual operation then finishes in the background. Since the
SimpleWriteBehindCache cache layer does not com-
bine I/O operations the maximum operation size is 100 KiB
due to the network granularity.

The AggregationCache cache layer performs sim-
ple write optimizations as well as write-behind. It tries
to combine the next I/O operation with as many other
queued I/O operations as possible. This is done by per-
forming forward and backward combination by respectively
appending and prepending other I/O operations to the cur-
rent I/O operation. Two I/O operations can be combined
when they cover a contiguous region when merged – that
is, offset1 + size1 = offset2 or vice versa. However, this
can – and should – be changed to also combine over-
lapping accesses in the future. This minor detail is ir-
relevant for the benchmarks used in this paper, because
they do not perform any overlapping accesses. Since the
AggregationCache cache layer combines I/O opera-
tions the operation size is only limited by the I/O granu-
larity, that is, the maximum operation size is 10 MiB.

To put these cache layers into relation with existing file
systems, the comparison with PVFS is as follows: In PVFS,
the normal buffer size per I/O operation is 256 KiB. Only a
subset of reads is announced to the I/O subsystem. Effec-
tively, large reads are fragmented, which might cause the
access pattern to look like random accesses when multi-
ple clients use the file system concurrently. This, in turn,
can cause a serious performance degradation. The PVFS
read performance can be compared to the NoCache. As
Linux performs write-behind and some sort of aggregation
the observable write performance is a bit lower than the one
achieved with the AggregationCache.

4. Design

The main problem with client-side optimizations is the
fact that these optimizations usually do not have enough
information to efficiently optimize operations. Collective
I/O can be used to alleviate this problem to some extent by

granting the clients access to the I/O requests of all partic-
ipating clients. When using server-side optimizations like
the aggregation cache and server-directed I/O the servers
themselves decide which operations they should perform
next and in which order they should be performed.

4.1. Aggregation Cache

The AggregationCache cache layer currently only
performs very basic optimizations for write operations.
When the next operation is processed, all pending opera-
tions are examined to find out whether a pending operation
can be appended or prepended to the next operation. Apart
from this, the AggregationCache always processes op-
erations in the order in which they are received from the
clients.

These optimizations are extended to also work for read
operations. This is done by simply performing the same ex-
amination and merging of operations in the read case. Ef-
fectively, this is comparable to the server-directed approach.
Even though the server does not choose which read to issue
next, it combines this operation with all overlapping opera-
tions in the queue.

4.2. Server-Directed I/O

The server-directed I/O implementation is different from
the AggregationCache, because it additionally re-
orders I/O operations. A large number of clients performing
many small operations can easily saturate the I/O system.
The optimizations implemented in the server-directed I/O
cache layer try to satisfy as many client requests with as lit-
tle actual I/O requests as possible and to determine the best
way of handling these I/O requests.

The main method to do this for read operations is to
merge multiple client requests into larger contiguous read
operations. To be able to perform the merge operations as
efficiently as possible all client requests are stored in per-
file queues and sorted by the request’s offset within the file.
The server-directed I/O cache layer has access to all pend-
ing read requests and can change their order to improve per-
formance.

For write operations, this is done by discarding unnec-
essary write requests early and merging multiple client re-
quests into larger contiguous write operations. The client
requests are stored in the same way as in the read case to
allow efficient merge operations. The server-directed I/O
cache layer can also change the order of pending write re-
quests and delay the actual writing of the data to improve
performance.

Note that this reordering does not violate the consistency
requirements usually found in file systems, since read oper-
ations can still return the most recent data from the buffer.



5. Evaluation

The simulated cluster is made up of twenty nodes. Ten
of these nodes are used as clients, while the other ten are
used as servers. Each node has one CPU, 1,000 MiB of
RAM and a 1 GBits/s Ethernet NIC. The CPUs can calcu-
late 1,000,000 instructions per second and have an internal
data transfer speed of 1,000 MiB/s. The NICs can transfer
up to 100 MiB/s and have a latency of 0.2 ms. All nodes
are connected to one switch with a maximum bandwidth
of 1,000 MiB/s. Additionally, each node’s I/O subsystem
consists of one HDD with a transfer rate of 50 MiB/s and
7,200 RPM. This limits the maximum I/O throughput to
500 MiB/s. The HDDs have an average seek time of 10 ms
and a track-to-track seek time of 1 ms. Whenever two sub-
sequent accesses are not more than 5 MiB apart the HDD
has to perform a track-to-track seek. Otherwise an average
seek has to be performed.

The clients’ data is striped across the servers with a sim-
ple round-robin scheme that works like RAID 0. The strip-
ing size is set to 64 KiB, which corresponds to PVFS’s de-
fault striping size.

Additionally, all clients and servers have empty caches
at the beginning of each test. Consequently, all data has
to be read from the underlying storage device. This means
that neither the read nor the write throughput can exceed
500 MiB/s.

As write operations are issued in the network granular-
ity, write performance can be worse than the read perfor-
mance. This is due to the fact that splitting up causes more
– and smaller – operations to be performed when a non-
optimizing cache layer is used. However, due to the fact
that write operations can be cached for an arbitrary time
and then processed in the background there is more room
for optimization. Read operations need to be processed as
fast as possible, because clients need the requested data to
continue operation. Therefore, when only performing a rel-
atively small number of read operations in parallel read per-
formance is usually much lower than write performance.
When many read operations are batched together this gap
between read and write performance should shrink.

5.1. Individual and Collective I/O

This comparison uses individual and collective I/O oper-
ations. The accessed file is 1.000 MiB in size and divided
into data blocks of equal size. The benchmark is executed
with varying data block sizes.

In the individual case, either one data block (Ind.),
100 data blocks (Ind. (100)) or all data blocks (Ind. (All))
are accessed per iteration. In the collective case, each
client performs only one collective operation to access
1/10 of all data blocks at once. Both the original Two-
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Figure 1. Summary – 5 KiB Data Blocks
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Figure 2. Summary – 50 KiB Data Blocks

Phase (TP) as well as the Interleaved Two-Phase (I-
TP) [4] protocol are used. This I/O pattern resem-
bles the I/O patterns often found in High Performance
Computing applications, where iterative algorithms per-
form I/O every n iterations. All tests are performed
with the NoCache (NC), SimpleWriteBehindCache
(SWBC), AggregationCache (AC) and ServerDi-
rectedIO (SDIO) cache layers.

Figure 1 shows all results obtained for read and write
operations with a data block size of 5 KiB. As can be
seen, performance suffers when using non-optimizing cache
layers or too few operations per iteration. Batching op-
erations results in performance gains. For read opera-
tions, however, the maximum performance is only obtained
when batching all operations. This is due to the fact that
read operations must be processed when the clients re-
quest them and can not be postponed. For write opera-
tions, less batching is required to obtain the maximum per-
formance. This is due to the fact that write operations
can be postponed and processed in the background. Indi-
vidual I/O operations with the AggregationCache and
ServerDirectedIO cache layers beat both Two-Phase
implementations. For write operations, the Two-Phase im-
plementations do not perform well when used with non-
optimizing cache layers. This is due to the fact that write
operations are not performed in large contiguous regions
internally – in contrast to the read case. However, this is
a minor implementation detail and even using the optimiz-
ing cache layers delivers worse performance than the test
with individual I/O operations.

Figure 2 shows all results obtained for read and write op-
erations with a data block size of 50 KiB. The results look
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Figure 3. Summary – 512 KiB Data Blocks

like the ones in figure 1 except for the fact that better perfor-
mance is achieved when using non-optimizing cache layers.
This is due to the larger data block size.

Figure 3 shows all results obtained for read and write op-
erations with a data block size of 512 KiB. The results look
like the ones in figure 2 except for the higher performance
with non-optimizing cache layers, which is due to the larger
data block size.

Overall, the ServerDirectedIO cache layer delivers
the maximum performance in almost all tests using individ-
ual I/O operations.

6. Conclusion

The results from section 5 show that client-side op-
timizations like the Two-Phase protocol do not neces-
sarily beat server-side optimizations in terms of perfor-
mance. In fact, the server-side optimizations found in the
AggregationCache and ServerDirectedIO cache
layers deliver better performance in all tested cases. How-
ever, to obtain satisfactory performance it is necessary to
batch operations or use large operations. Batching opera-
tions is only necessary when using small operations, while
large operations deliver good performance even when per-
formed individually.

The results also suggest that even simple server-side op-
timizations like those in the AggregationCache cache
layer are better suited for use cases often found in HPC.
Integrating such optimizations into parallel cluster file sys-
tems could alleviate the need for sophisticated client-side
optimizations.

More information, benchmarks and evaluations can be
found in [3], which also includes random, database and real-
world workloads. These were omitted in this paper due to
space constraints. Additionally, visualizations of low-level
client and server activities were conducted to analyze the
influence of the different optimizations in detail.

7. Future Work

At the moment, the server-directed I/O cache layer does
not influence the order in which the clients send their data.

Clients first announce their write operations and then send
their data when this announcement is acknowledged. This
could be used to further increase performance, because data
could be received in the order in which it is needed, avoiding
needless buffering.

The cache layers do not cope well with memory exhaus-
tion at the moment. For example, too many write operations
could fill up the whole main memory, causing read opera-
tions to be deferred. This can also be potentially used to
starve read operations by sending many large write opera-
tions. However, this could be easily rectified by limiting
the amount of memory used to buffer read and write oper-
ations. To guarantee fairness, it is possible to add support
for priorities, which could then be used to make sure that
no operation waits in the queue for too long by raising the
priority based on the time an operation has been waiting.

A component simulating the RAM of the nodes is miss-
ing in PIOsimHD. For example, the latency caused by RAM
accesses is currently not simulated at all. Additionally, this
would make it possible to implement a real read cache in
the cache layers themselves.

Additional benchmarks using SSDs as the underlying
I/O subsystem would be interesting to perform. It would be
especially interesting to see a comparison of how the differ-
ent optimizations behave when using HDDs and SSDs.
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