
Performance Evaluation of the PVFS2 Architecture

Julian M. Kunkel, Thomas Ludwig
Ruprecht-Karls-Universität Heidelberg, Germany

Institute of Computer Science
Research Group Parallel and Distributed Systems
julian.kunkel@gmx.de, t.ludwig@computer.org

Abstract

As the complexity of parallel file systems’ software stacks
increases it gets harder to reveal the reasons for perfor-
mance bottlenecks in these software layers. This paper
introduces a method which eliminates the influence of the
physical storage on performance analysis in order to find
these bottlenecks. Also, the influence of the hardware com-
ponents on the performance is modeled to estimate the
maximum achievable performance of a parallel file system.
The paper focusses on the Parallel Virtual File System 2
(PVFS2) and shows results for the functionality file cre-
ation, small contiguous I/O requests and large contiguous
I/O requests.

1. Introduction

The trend to high performance computing leads to super-
computers consisting of a high number of nodes. While the
aggregated computational performance rises it is difficult
for the I/O subsystem to keep pace. Parallel file systems
like e.g. PVFS2 [?, ?], Lustre [?, ?], and GPFS [?] are de-
signed to provide I/O performance that scales well with the
number of nodes [?]. Physical I/O devices of an arbitrary
number of server nodes can be combined by a parallel file
system into one logical file system to increase its size and
performance. In the best case a parallel file system provides
the aggregated performance of all I/O devices to other client
applications at a high abstraction level.

However, the achievable aggregated performance of a
parallel file system depends on various factors. Consider-
ing a single server the capabilities of CPU, network and
I/O devices limit the contribution to the file system’s overall
performance. On the other hand the access pattern of an ap-
plication and the distribution of data and metadata across
the servers defines the level of parallel servers accesses.
Moreover the file system itself is a complex parallel pro-
gram which has its own bottlenecks. Due to these issues

we usually see only a certain percentage of the expected
throughput as sustained performance.

In order to improve the implementation of a parallel
file system developers determine the performance with I/O
benchmarks. However, due to the interplay of the compo-
nents it is hard to identify the reasons for unsatisfactory per-
formance. It might be induced, for example, by the behav-
ior of the servers’ I/O subsystem, by the network or by slow
CPUs. Also, as a result of the data distribution the requests
might utilize only a few servers while others are idle.

This paper introduces a systematic approach for perfor-
mance analysis of a parallel file system’s architecture and
shows results for various request types. The idea is to re-
place the parallel file system’s methods accessing the phys-
ical I/O system with an efficient stub pretending to be real
physical storage. This stub represents the necessary data of
the file system in the servers’ memory and never triggers
real I/O operations. Thus, benchmarking of such a modi-
fied file system is not influenced by the slow underlying I/O
subsystem.

This paper is structured as follows: At first an overview
about the state-of-the-art in performance analysis and re-
lated work is given. Then, PVFS2 is introduced in brief.
Some simple considerations help to estimate the perfor-
mance of a parallel file system in section 4. At next, details
of our benchmarking concept are described. Then, the eval-
uation environment and test programs are introduced. A de-
tailed summary of practical results using this methods with
PVFS2 is given in section 6. These results are discussed in
the last section.

2. State-of-the-Art and Related Work

There are several tools which help to analyze the per-
formance of parallel applications. They can be classified
into on-line and off-line tools. Every tool requires a mod-
ification of the source code or binary to integrate code for
collecting measures of interest. Often, this so-called instru-
mentation can be done automatically for example by linking

the program against a special library.
On-line tools like Paradyn [?] collect and display the

measured data at run-time and are even able to control the
overhead imposed by the tool. Other tools even allow a di-
rect manipulation of the program. However, these tools are
parallel programs by themselves, thus complex, and due to
their resource requirements they influence the run-time be-
havior of the application. Off-line tools are not so flexible,
but easier to implement. They either collect statistical data
during a time period (profiling) or information about events
during run-time (tracing). This information gets stored and
can be analyzed after program completion. For example the
MPE [?] tracing library saves events triggered by MPI func-
tion calls in trace files, which can then be analyzed by the
jumpshot viewer of MPICH2 [?]. There are also a couple
of commercial tools like e.g. the Intel Trace Analyzer (the
former Vampire [?]).

Various I/O benchmarks are available for regular local
file systems, e.g. Bonnie [?], IOzone [?] and PostMark [?].

As parallel and network file systems can be accessed
with a vast amount of access patterns and mostly are op-
timized for specific tasks, there is currently no common
benchmark available that covers a representative range of
possible access pattern [?]. In most cases either code of a
scientific application or simply a serial benchmark is used
to determine the performance. A well known and often ap-
plied benchmark is beff io [?]. Its purpose is to determine
the file system performance with different characteristic ac-
cess patterns. However, the interpretation of measured per-
formance values in order to detect bottlenecks in the system
is complicated due to the complex interplay of the compo-
nents.

Replacing the physical I/O subsystem with a simple stub,
i.e. with dummy functionality, eases the task to find bottle-
necks in the implementation of a parallel file system. This
idea is derived from software testing where the correctness
of code segments is verified with stubs only providing the
code necessary for testing. One might argue that the stor-
age space of a parallel file system could be placed on a
in-memory file system, for example on Linux tmpfs, in or-
der to gain similar results. That is partly true, though in-
memory file systems are limited to the size of the memory,
so benchmarking of a large amount of data is not possible.
However, an in-memory file system is appropriate for small
datasets and analysis of metadata performance. Finally, the
efficiency of the storage layer itself can be determined by
comparing tmpfs results with the results of an efficient stub.

3. Overview of PVFS2

The parallel virtual file system PVFS2 [?] is a redesign
of the first version of the file system aiming at better modu-
larity, flexibility, and a tight MPI-IO integration.

A PVFS2 server holds exactly one so-called storage-
space, which may contain a part of several logical file sys-
tems. In terms of PVFS2 a logical file system is called col-
lection. According to the type of storage provided for a
file system, servers can be categorized into data servers and
metadata servers. A distribution function controls the way
data is spread over the available data servers. In most cases
it gets striped over multiple nodes using local files of a Unix
file system. Metadata servers store object attributes. Thisis
all the information about files in the Unix sense, i.e. object
type, ownership and permissions. Additional information
like the directory hierarchy, is stored on metadata servers,
too. A compute node can be configured as either a metadata
server, a data server, or both at once.

PVFS2 has the layered architecture illustrated in fig-
ure 1. Interfaces between layers use a non-blocking seman-
tics. The user-level interface provides a high abstractionto
a PVFS2 file system. Currently, there are integrations with
MPI-IO and the kernel VFS available. The system interface
API provides functions for the direct manipulation of file
system objects and hides internal details from the user. In-
voking a request starts a dedicated statemachine processing
the operation in small steps. Statemachines break complex
requests into several states each representing an atomic op-
eration. Clients and servers can interlock the execution of
these operations to obtain a time-shared processing of dif-
ferent requests. A specific execution order is chosen to en-
sure that a client crash has no impact on the metadata con-
sistency.

This layer also incorporates two caches, which store
informations about the directory hierarchy and object at-
tributes to avoid repeated server requests. Unlike NFS and
other network file systems PVFS2 does not cache I/O opera-
tions on the client side. The job layer consolidates the lower
layers into one interface and maintains thread functions for
these layers. Data of a larger I/O operation is directly trans-
ferred between two endpoints by Flow. An endpoint is one

Figure 1. PVFS2 software architecture

out of memory, network, or persistency layer. Flow takes
care of the data transmission itself once the endpoints are
specified. The Buffered Message Interface (BMI) provides
a network independent interface. Clients communicate with
the servers by using the request protocol, which defines
the message structure and contents. BMI can use different
communication methods, currently TCP, Myricom’s GM,
and Infiniband. On the server side a main process de-
codes incoming requests and starts a new instance of the re-
quest’s dedicated statemachine. Trove [?] is the persistency
layer providing methods for manipulation of key/value pairs
(used for metadata) and data streams.

BMI, Flow and Trove are modular and the actual imple-
mentation can be chosen by the user. Currently, there is only
one Trove module available, database plus file (DBPF) [?],
which stores metadata in Berkeley databases and data in
Unix files. We will replace this very same component in
order to conduct our benchmarking approach.

4. Performance Limitations

In this section some simple considerations lead to esti-
mated upper bounds for the aggregated throughput of small
and large I/O requests. Therefore, the influence of the I/O
subsystem, network, and CPU are discussed. As these com-
ponents limit strongly the performance of a parallel file sys-
tem, it is important to understand their influence. Commu-
nication between different machines is limited by the net-
work performance. The following network characteristics
are important:Latencyis the time between the sending of
a message and its arrival at the receiver side. Usually we
evaluate this time with empty message body.Bandwidthis
the number of bits which can be transferred in a specific
time. Because protocols like TCP have some overhead and
control algorithms, thethroughputis smaller than the band-
width. Latency and bandwidth depend on the used network
technology and topology. Latency is also influenced by the
distance.

The I/O subsystem normally consists of a set of hard
disks. Important characteristics of a hard disk are access
time and transfer rate.Access timeis the time needed to
seek a data block. It depends on the current position of
the disk’s heads and the target block. In average the access
time is a few milliseconds. Once the heads are placed, sub-
sequent blocks of the cylinder can be read or modified very
fast, which results in a highertransfer rate. In order to im-
prove performance, a disk typically prefetches and caches
blocks. Additionally, the operating system buffers a fair
amount of an I/O operation depending on the amount of free
memory. A write operation can be buffered efficiently, so it
can complete before data is actually written to disk. A read
operation can completely omit any I/O operation if the data
is in memory. Otherwise, the operation has to wait for the

data to be available.
The server’s CPU speed and architecture define the time

needed to process instructions. PVFS2 mostly uses efficient
data structures like hash tables. In comparison to the net-
work latency and storage subsystem’s access time, the CPU
is the fastest component. Especially if we connect various
clients to one server, CPU is not expected to limit through-
put. Assume that each request needs the same time for pro-
cessing. Then the number of requests which can be pro-
cessed in a time interval is determined by the CPU’s capa-
bilities.

As a result performance of small requests greatly de-
pends on the network latency and the disks access time,
while large requests are bound by the network throughput
and disk’s transfer rate. Due to the fact that current disks are
slower than the network, measured performance is greatly
influenced by the disks’ capabilities. Also, it is hard to pre-
dict the benefit of the disk caching strategies.

In order to estimate the throughput for large contiguous
I/O requests we assume the following facts: There are 5 I/O
servers, each equipped with 1 GBit/s Ethernet and a hard
disk with an average transfer rate of 40 MByte/s. Also, there
is a disjunctive set of clients each equipped with 1 GBit/s
Ethernet. With tools like netperf, which are designed to an-
alyze network performance, network throughput can be es-
timated better. Figure 2 shows the aggregated performance
limits of network and I/O subsystem for the servers and a
variable number of clients. On the server side the actual
performance is the minimum of disk throughput and net-
work throughput (horizontal lines), on the client side the
actual performance will be on the right side of the diagonal.
Thus the observed performance will be in the segment right
of the diagonal and below the lower horizontal line.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

Number of clients

I/O throughput
client network throughput

servers network bandwidth limit

Figure 2. Estimated performance limits for
large I/O requests

Further information about internals of a parallel file sys-
tem help to tighten the upper bound. However, sometimes
it is not easy to obtain such information, especially if an
inspection of the source-code is not possible and optimiza-
tions on different layers interact. In the following we incor-

porate knowledge about some PVFS2 internals. The lack of
a client side caching mechanism for I/O operations entails
the cost of at least one network round-trip-time. Small I/O
accesses which fit into the initial request or response could
be transmitted with one round-trip (the size of data that fits
in the packet is about 16 KByte). Bigger accesses require
a rendezvous protocol and a handshake which can be trans-
ferred directly before the I/O is started for reads but not for
writes. Thus the transfer needs an extra round-trip for write
operations. This knowledge is incorporated in the estima-
tions for small I/O accesses (figure 3 and 4).

Modifying metadata operations are not cached and may
consist of multiple requests, which typically have to be pro-
cessed in serial order to guarantee a consistent file system.
E.g. in order to create a file 4 requests are processed (5 with
MPI): one to verify if an object with the same name exists
(necessary in MPIFile open), one to create a new metafile
object on the metaserver, one to create a datafile on each
dataserver (requests can be processed in parallel), one to
write the handles of the datafiles in the metafile and one to
update the directory entry. All steps require at least 5 modi-
fying operations which enforce synchronization of the disc.

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

Block size in KByte

net. thru.
net. lat. + net. thru.

net. lat. + net. thru. + avg I/O access
net. lat.+ net. thru.+ avg. I/O access + thru.

Figure 3. Estimated performance limits for
small I/O requests of one client

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

Block size in KByte

net. bandwidth limit
network throughput

net. lat. (Write) + network thru.
net. lat. (Read) + network thru.

net. lat. + network thru. + avg I/O access

Figure 4. Estimated performance limits for
small I/O requests of one client - small block-
sizes

5. Evaluation Setup

At first, we design and implement a new Trove module,
the Trove Analyzation Stub (TAS). It uses red-black-trees as
basic data structures to provide a fast in-memory manage-
ment of metadata. Metadata is handled correctly to support
all kinds of benchmarks. I/O requests are discarded while
the size of a file is adapted in the metadata and success of
the operation is signaled to other layers immediately. For
further technical details refer to [?].

In order to compare and evaluate the two different per-
sistency modules TAS and DBPF the simple MPI pro-
gramsmpi-io-test andmpi-md-test (shipped with
PVFS2) benchmark the performance of several client and
server configurations.
mpi-io-test first writes a number of blocks of the

same size withMPI File write and then opens the file
again and reads the data back withMPI File read. In
each iterationMPI Barrier ensures that all processes are
ready before the actual I/O operation is done. The position
is then set withMPI File seek. During the process it
measures the time needed for the I/O operations and cal-
culates the bandwidth. Multiple clients access the blocks
of the file in a round-robin fashion e.g. process one ac-
cesses the first block of the given size, process two the sec-
ond block and so on.

To benchmark metadata operations the MPI pro-
gram mpi-md-test runs the same number of
MPI File open calls on each client to create a file.
The program is adapted to supported individual operations
per client.

It is interesting to see the influence of the number of
clients and servers and the accessed file size. On the work-
ing group’s cluster configurations up to five servers were
tested. Clients can be distributed on the server nodes, then
a maximum I/O throughput is possible due to bypassing the
network for access of local disk. Also, disjoint machines
can be used for client and servers. Normally, induced by
timing and hardware effects performance varies slightly be-
tween different test runs. Therefore throughput for the same
input parameters is measured three times. Also, to guaran-
tee an identical environment for each run for one test, the
servers are restarted and the storage space is recreated. In
the evaluation benchmark results are compared with the es-
timated upper bounds to allow a qualitative analysis.

One testbed is the working groups cluster, which consist
of 10 nodes each equipped with two Intel Xeon 2000 Mhz
processors, 1 GByte main memory, Gigabit Ethernet which
is interconnected via copper cable using a star topology,
and an IDE hard disk which has a throughput of about
40 MByte/sec. DBPF uses an ext3 partition mounted with
the optionscommit=60 anddata=writeback to store
persistent data.

To provide new result and refer to some former results
the version of PVFS2 used for the benchmarking differs
and are either from December 2005 (results from the Bach-
elor’s Thesis [?]), July or October 2006. If the version used
for testing is not the recent october version this is specified
in the diagram titles. In the meantime the working groups
cluster has been reinstalled as well and some TCP options
were tuned.

6. Results with PVFS2

In this section first we present the results for meta-
data operations, then for small contiguous I/O access of a
100 MByte file and for large contiguous I/O access of big
files.

Figure 5 shows the achieved number of create operations
per second benchmarked with the adaptedmpi-md-test
on different configurations of one metadata server. Note
that the clients are distributed over nine nodes in round-
robin fashion. For comparisons the in-memory file system
tmpfs is shown and a configuration setup where the server
is not forced to sync modifying operations to disk. An ob-
servation is that the performance of DBPF without sync-
ing is close to DPBF on top of tmpfs which is expected.
Earlier versions of PVFS2 organized metadata in a differ-
ent disk layout which resulted in an inefficent non-syncing
version [?]. The diagram shows that it is important to de-
velop clever mechanisms to guarantee consistency without
the necessity to force synchronization on each modifying
operation. In the meantime the developers incorporated a
mechanism into PVFS2 to coalesce multiple metadata re-
quests into one synchronization, however this is out of the
scope of this paper.

Performance of I/O accesses for block sizes between
1 KByte up to 10 MByte is measured for one and five
dataservers, the aggregated size of the file is always
100 MByte which is expected to be cached well. In fig-
ure 6 the throughput of TAS is compared with the estimated
bounds. The estimation is a asymptote to the performance
of TAS. Diagrams 7 and 8 highlight the fact that TAS per-
formance is an upper bound for each implementation, even
if the data fits into memory. A reduction of the write per-
formance due to the change to the rendezvous protocol can
be seen at 16 KByte for TAS but not for DBPF. Additional
testing with for example DBPF on tmpfs could help to iden-
tify inefficiencies. Also the throughput of DBPF increases
close to the network bandwidth limit for larger block sizes.
During the recent test for small block sizes it turned out that
performance of TAS and the immediately completion was
slower than DBPF’s queuing mechanism (only about 50%).
Testing indicates an inefficiency in the layers, which can
be bypassed by using only one parallel data flow for TAS.
Thus these results are shown in these diagrams. The mod-

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50

 O
p

e
ra

ti
o

n
s
/s

e
c
o

n
d

 Number of clients

TAS
DBPF-tmpfs

DBPF-tmpfs-nosync
DBPF

DBPF-nosync

Figure 5. Results for MPI file creation test
(PVFS2: July)

ification of the number of flows however does not increase
the performance of DBPF, thus it uses the default of 8.

At first a comparison of the throughput for one server
and one client with the performance of 5 clients and 5
servers (presented in figures 9 and 10) seem to indicate that
the throughput does not scale with the numbers of servers.
One server archives the throughput of 44 MByte/second
for read and 32 MByte/second for write while five servers
achieve only a throughput of 128 MByte/second for read
and 118 MByte/second for write requests. This is only
roughly three times faster than for one client and server. To
understand this behavior it is necessary to look at the strip-
ing mechanism. By default PVFS2 stripes data in 64 KByte
chunks over the servers.

Depending on the access pattern the load might be im-
balanced or at worst some servers might be idle at a time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Block size in KByte

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 6. I/O throughput for one client ac-
cessing a variable block size and estimated
bounds

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Block size in KByte

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 7. I/O throughput for one client ac-
cessing a variable block size

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Block size in KByte

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 8. I/O throughput (5 clients, 1 server)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Block size in KByte

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 9. I/O throughput (5 clients, 5 servers)

reducing the maximum concurrency. This is the case for
mpi-io-test running with smaller block sizes than the stripe
size. For a block size of 32 KByte only three servers are hit
during I/O, two servers have to access two times 32 KByte
and another one has to access one block.

Freezing the block size to a multiple of 64 KByte and in-
creasing the number of clients the performance should scale
linearly which is shown in figure 11. Unfortunately, for big
block sizes like 10 MByte the gradient is suboptimal (fig-
ure 12).

To measure performance of large contiguous I/O re-
quests during each iteration the MPI call of mpi-io-test

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Block size in KByte

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 10. I/O throughput (5 clients, 5
servers)

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Number of clients

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 11. I/O throughput for a blocksize of
64 KByte (5 servers)

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5

T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

Number of clients and I/O servers

Read-DBPF
Read-TAS

Write-DBPF
Write-TAS

Figure 12. I/O throughput for a blocksize of
10 MByte (5 servers)

transfers 10 MByte of data until the desired file size is
reached. Figure 13 shows older results for a single client
accessing only one file which has a varying file size.

Looking at the diagram we can see that TAS read per-
formance sticks behind the write performance. This in-
dicates a bottleneck in the architecture: internally read
and write operations are treated similarly, however, the
flow protocol has a different implementation. The write
throughput (116 MByte) slightly surpasses netperf’s results

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000 12000

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

File size in MByte

network bandwidth
average I/O throughput

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 13. I/O throughput for 1 client access-
ing a file with varying size (PVFS2: Dec.05)

(112 MByte) and is even close to the network bandwidth
(125 MByte). Our concept shows that certain problems in
the implementation are hidden by the fact that the slow disk
access dominates overall throughput. In the meantime this
specific bottleneck is tracked down and eliminated (com-
pare figure 15).

Caching effects of the disk and linux kernel can be seen
for the througput of DBPF. The MPI program first writes
the whole data then waits until all clients are finished and
rereads the data. This behavior explains that read requests
are handled efficiently up to 800 MByte, which is almost the
available main-memory. Write requests might benefit up to
big files because they need not wait for the disk to finish an
operation and instead cache the data in memory and keep
the disk busy.

In figure 14 the performance of a variable number of
clients writing together 12.800 MByte to a single file is
given. While the client number is increased TAS read and
write performance converge to a value close to the servers
network bandwidth. This suggests that PVFS2 is well de-
signed for this use case. However, the real read performance
drops to half of its value when benchmarking one client
and two clients. Probably this loss can be traced back to
the Linux kernel’s asynchronous I/O implementation (AIO)
which is used by DBPF. Also, while the client number in-
creases the I/O performance decreases.

This might be induced by the local file system because
a disks performance decreases for multiple streams due to
necessary head movements. With the new PVFS2 version
and reinstalled testing environment the throuput of TAS
sticks to 116 MByte for all number of clients and servers.
Also the performance does not drop for DBPF.

Figure 15 shows the measured throughput for the current
PVFS2 with a variable number of clients and servers ac-
cessing a file which has a total size of 12.800 MByte. While
TAS throughput grows linearly performance for read opera-

tions does not for DBPF. This points out that network is not
the bottleneck for DBPF. The issue is unresolved and has to
be investigated in the future.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

Number of clients

network bandwidth
average I/O throughput

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 14. I/O throughput for a variable num-
ber of clients acessing a 12800 MByte file
(PVFS2: Dec.05)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5

 T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c
o

n
d

 Number of clients and servers

TAS-Read
DBPF-Read

TAS-Write
DBPF-Write

Figure 15. I/O throughput for a variable num-
ber of clients acessing a 12800 MByte file

On Argonne National Laboratory’s Chiba City cluster
tests with a higher number of clients and servers have been
run. Chiba’s machines consist of dual 500 MHz PIII with
512 MByte and are interconnected with Myrinet 2000 cards.
However, the effective network throughput between two
nodes was only about 90 MByte. Testing revealed that the
network interconnect has some issues, sometimes even the
same number of packages have to be transmitted twice re-
sulting in bad performance. In this test the number of clients
and servers is increased in the same proportion, each client
accesses a total of 150 MByte of data which fits into the
servers’ memory. In figure 16 the best of three runs is
shown. It can be seen that the expected performances scale
with the number of clients and servers almost linearly. Note
that the used version of PVFS2 is older.

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
in

 M
B

y
te

/s
e

c

Number of clients and servers

dbpf-Write
tas-Write

Figure 16. I/O throughput for a variable num-
ber of clients each accessing 150 MByte of
data (PVFS2: July)

7. Conclusions and Future Work

There is no benchmark available which is suitable for an
analysis of a parallel file system that reveals internal per-
formance bottlenecks. At first we want to have reference
values for performance measures that represent best case
values. Any improvement of internal software layers will
be evaluated with respect to these best case values. The
TAS module, which is a dummy persistent storage module
for PFVS2, acts as a reference for throughput achievable
from the other Trove modules, which do real physical I/O.
With the help of such an upper bound the real costs of a
module’s I/O strategy are pointed out. Also, the effect of
changes in the other layers can be observed better. It seems
to be important to do performance regression testing to keep
track of the performance changes. Further performance de-
tails that refer to the December 05 PVFS2 version can be
found in [?] and comparision with the new results show the
improvements of the PVFS2 project in this period.

In our approach the real persistency layer is replaced by
a dummy that resembles a correctly working disk I/O layer.
By running benchmark programs we could find several bot-
tlenecks in the PVFS2 implementation, for data I/O as well
as for metadata management. As a project in parallel to this
we design and implement a Jumpshot based tool environ-
ment that will give a better insight into server performance
details.

References

[1] T. Bray. Homepage of Bonnie.
http://www.textuality.com/bonnie/.

[2] I. Cluster File Systems. Lustre: scalable, robust,
highly-available cluster file system. Online-document
http://www.lustre.org/, 2006.

[3] J. Katcher. Postmark: a new file system benchmark. Tech-
nical report TR3022. Network Appliance, Oct. 1997.

[4] J. M. Kunkel. Performance Analysis of the PVFS2 Persis-
tency Layer. Bachelor’s thesis, Ruprecht-Karls-Universität
Heidelberg, Germany, Institute of Computer Science, Re-
search Group Parallel and Distributed Systems, Feb. 2006.

[5] A. N. Laboratory. http://www.pvfs.org/. Online-document
http://www.pvfs.org/, 2006.

[6] R. Latham, N. Miller, R. Ross, and P. Carns. A next-
generation parallel file system for linux clusters.Linux
World Magazin, 1, 2004.

[7] J. Layton. Cluster Monkey: Benchmark-
ing Parallel File Systems. Online-document
http://www.clustermonkey.net/content/view/62/32/, 2003.

[8] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The paradyn parallel performance
measurement tool.IEEE Computer, 28(11):37–46, 1995.

[9] MPICH2 Team. Homepage of mpich2. http://www-
unix.mcs.anl.gov/mpi/mpich/.

[10] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and
K. Solchenbach. VAMPIR: Visualization and analysis of
MPI resources.Supercomputer, 12(1):69–80, 1996.

[11] W. D. Norcott. Homepage of IOzone.
http://www.iozone.org/.

[12] PVFS2 Development Team. Trove Database + Files (DBPF)
Implementation. PVFS2 Documentation included in the
source code package, 2005.

[13] PVFS2 Development Team. Trove: The PVFS2 Storage In-
terface. PVFS2 Documentation included in the source code
package, 2005.

[14] R. Rabenseifner and A. E. Koniges. Effective communica-
tion and file-I/O bandwidth benchmarks.Lecture Notes in
Computer Science, 2131:24+, 2001.

[15] A. Saify, Kochhar, G., J. Hsieh, and O. Celebioglu. Enhanc-
ing high-performance computing clusters with parallel file
systems.Dell Power Solutions, May 2005.

[16] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. InProceedings of the Usenix
FAST 2002 Conference, pages 231–244, 2002.

[17] P. Schwan. Lustre: Building a file system for 1000-node
clusters, 2003.

[18] C.-F. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia,
A. Chan, E. L. Lusk, and W. Gropp. From trace generation
to visualization: A performance framework for distributed
parallel systems. InSupercomputing, 2000.

