
Synergetic Tool Environments�

Thomas Ludwig, Jörg Trinitis, and Roland Wismüller

Technische Universität München (TUM), Informatik
Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR-TUM)

Arcisstr. 21, D-80333 München
{ludwig,trinitis,wismuell}@in.tum.de

Abstract. In the field of parallel programming we notice a consider-
able lack of efficient on-line tools for debugging, performance analysis
etc. This is due to the fact that the construction of those tools must
be based on a complicated software infrastructure. In the case of such
software being available tools from different vendors are almost always
incompatible as they use proprietary implementations for it. We will
demonstrate in this paper that only a common infrastructure will ease
the construction of on-line tools and that it is a necessary precondition
for eventually having interoperable tools. Interoperable tools form the
basis for synergetic tool environments and yield an added value over just
integrated environments.

1 Introduction

In the area of programming parallel and distributed applications we find tools
of various types to help us to develop, optimize, and maintain parallel code [10].
Tools can be categorized as on-line and off-line and as interactive and auto-
matic. Off-line tools are trace based and allow a post-mortem program analysis
for e.g. performance bottleneck detection or debugging. By their technology they
are not able to manipulate the program under investigation. This can only be
performed by on-line tools. They provide instant access to the program, thus
supporting a wider variety of tools. Interactive tools can be used for e.g. debug-
ging [2], performance analysis [6], program flow visualization, or computational
steering, whereas automatic tools offer services for e.g. dynamic load balancing
and resource management.

Although we nowadays find many tools from various developers from indus-
try and academia there is a decisive problem when applying them: on-line tools
can almost never be used in combination. Due to their complex software in-
frastructure needed for program observation and manipulation (usually called
monitoring system) they require the parallel program to be linked with special
libraries and run under strictly specified execution conditions such as especially
adapted runtime environments. Unless different tools are implemented by the
same producer they are based on incompatible infrastructure concepts which do
not allow a concurrent tool usage (see Figure 1).
� This work is partly funded by Deutsche Forschungsgemeinschaft, Special Research
Grant SFB 342, Subproject A1.

V. Malyshkin (Ed.): PaCT-99, LNCS 1662, pp. 248–257, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Synergetic Tool Environments 249

producer Bproducer A tool 1 tool 2

library
programming

application

architecture

library
programming

parallele

application

architecture

parallele

infrastructure Binfrastructure A

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Fig. 1. Incompatible on-line tools

Thus, synergetic effects of applying more than one tool during the same
program run are impossible. It is the goal of our project to change this situation
and to develop concepts and means for the implementation of environments of
interoperable tools.

2 The Concepts of Interoperable Tools

Interoperable tools is a concept that is hardly covered in the literature on devel-
opment and maintenance tools for parallel programs. Let us first have a closer
look on the basic ideas behind this concept.

The concept of interoperable tools is to provide a synergetic effect to the
developer by allowing to apply more than one tool at a time to a program run.
The synergy results from complementary functions in the individual tools which
add new features to each other.

Consider the usage of a debugger. You will monitor programs to find errors
in the code. With parallel programs that exhibit difficult timing behavior and
are used for long running applications like e.g. fluid dynamics simulations this
might result in long debugging sessions where the programmer waits for errors
to occur. If we add a second tool that can can perform regular and on-demand
checkpoints of a set of processes we will end up with a more powerful development
environment: If an error occurs we will set the program back to one of its recent
checkpoints and start with exploring the causes of the error. By this the debugger
will be much more efficient. We will even be able to checkpoint the debugger itself
and thus can restart not only the parallel program but a complete debugging
session.



250 Thomas Ludwig et al.

Interoperable tools are thus a combination of two or more on-line tools. They
may belong to the class of interactive and automatic tools. Their concurrent
usage will yield some synergetic effect which is more than just the sum of the
functionality of the individual tools.

We have to distinguish interoperable tools from integrated tools joined in a
certain tool environment. Integrated tools are usually a collection of interactive
on-line tools that can not necessarily be applied concurrently. Furthermore, al-
though it is a set of tools, it is not open to the integration of further tools. In
fact, its development concepts are usually identical to those of a single tool with
the difference that a larger set of functionality is supported.

What are the inherent problems of designing interoperable tools? As a matter
of fact there are currently no tools that meet the requirements of our definition.
The first problem is the complexity of the software infrastructure required by
on-line tools. A powerful monitoring system is necessary to support program
observation and manipulation. Different such systems were developed for differ-
ent tool types but none of them offers enough generality to support also other
tools. As monitoring systems are usually tightly joined to the parallel program
and its runtime environment, only one such system can be active at a time.
Second, there are hardly any powerful standards available, especially for inter-
faces between tools and monitoring systems. Having such standards could greatly
simplify the construction of interoperable tools and would allow to serve several
tools with a single monitoring system (see Figure 2).

producer C

application

architecture 3

library
programming

parallel

architecture 4 producer D

d
is

tr
ib

u
te

d
 s

ys
te

m

interface

infrastructur
common

h
o

st producer Btool 2tool 1producer A

system
monitoring

Fig. 2. Interoperable on-line tools



Synergetic Tool Environments 251

Finally, as there are no concepts for a general purpose tool infrastructure
there are consequently also no concepts for tool interoperability. It has not yet
been worked out how tools should be designed in order to be interoperable with
other, possibly yet unknown tools.

3 Levels of Interoperability

With the concept of interoperability being applied to tools we first have to
consider the levels of interoperability that are to be distinguished.

– The first level is characterized as co-existence. Several tools can be applied
concurrently to the same program run. However, they have no knowledge of
the existence of the other tools. The benefit of having more than one tool
is reduced by the danger of a potentially conflicting behavior of the tools.
If they manipulate the same objects of the program they might generate an
inconsistent program state. Consider a debugger that initiates a single step
mode on a process in combination with a load balancer that migrates exactly
this process to another node. A program abortion might be the consequence
of these tool activities.

– At the second level we have a concept called consistent co-existence. Tools
are obliged to preserve consistency of the program system under investi-
gation. In detail this implies that manipulations of objects are treated as
critical regions. It has to be guaranteed that only one tool is in the crit-
ical region with respect to specific objects at a time. As with consistency
mechanisms in other application fields we can determine several concepts to
meet this requirement. One possibility would be that the monitoring system
itself coordinates the access to objects by the various tools. Another way can
be provided with means for observing tool activities and controlling access
to individual objects. In any way there is no direct tool cooperation but a
coordinated co-existence.

– The third level is thus characterized by direct cooperation. By means of
a communication mechanism tools exchange control information and data.
A debugger could inform others of its single-step activity, a load balancer
could send its current load evaluation heuristics to some interactive tool to
be presented to the user. Direct cooperation is the most advanced concept
of interoperability. However, it might already limit the synergetic effects by
pre-defining them with the messages to be sent.

The three levels of interoperability require different concepts for their real-
ization. Concepts get more complex with each level. For the first level to be
reached it is sufficient to be able to run the tools concurrently. This can easily
be achieved by basing them on an identical software infrastructure which is pow-
erful enough to support the sum of the functionality required by the tools. Note
that there are hardly any realizations available that provide such a functionality.
With the second level we must require concepts for coordination in addition to
all concepts for the first level. Coordination could be performed automatically



252 Thomas Ludwig et al.

by the infrastructure itself. However, as the monitoring system knows nothing
of the tools’ semantics it might follow a worst case approach where everything is
coordinated by locks etc. even when this would not be necessary. A more flexible
approach is to provide the tools with mechanisms to coordinate their activities.
This comprises detection of object manipulation by other tools and locking of
objects against manipulation from other tools. It is essential to distinguish be-
tween object observation and object manipulation. In most cases only the latter
has to be coordinated as it bears the chance for inconsistencies in the tools and
the programs. Finally, with the third level we also require concepts for tool co-
operation. This can be achieved by a message passing mechanism by which tools
can control cooperation. Two issues are to be considered. Message passing must
follow a protocol that does not depend on the actual receivers to be present.
Usually we do not know in advance how many tools will be used concurrently in
a session. Messages must correspond to a fixed though expandable format. Dif-
ferent types of message formats must be offered for vice versa tool control and
information messages. Problems of this kind are already handled in the ToolTalk
approach from Sun. However, there is no methodology how to integrate this into
the individual tools.

We conclude that tool interoperability is a goal that is characterized by many
different aspects. Various degrees can be achieved with different effort providing
the tool user with more or less powerful tool environments and more or less
possibilities for synergetic effects.

4 The Infrastructure Concept: OMIS

The last section showed that for interoperable tools to be designed and imple-
mented we can identify one crucial prerequisite: We need a common software
infrastructure for all tools that is powerful enough to support their individual
functionalities and that allows for the various levels of interoperability. Such
an infrastructure concept was conceived in the OMIS project in our research
group [5].

The on-line monitoring interface specification (OMIS) was developed in 1995
and first published in January 1996. Its goal is to define an interface between
tools and on-line monitoring systems that allows to base various types of tools
on top of it. It covers on-line and off-line tools as well as interactive and au-
tomatic tools. The interface is currently oriented towards tools for parallel and
distributed programming based on the message passing paradigm. It offers a
single function by which tools can send requests to the monitoring system to in-
voke certain activities. Requests are structured as event/action-relations where
each such relation tells the monitoring system to watch for the occurrence of the
specified event and to invoke the specified actions when it occurs. By sending
sets of requests, a tool is able to program the monitoring system to perform a
certain functional behavior. Events and actions are composed by the name of a
service and a list of parameters. The latter usually identify objects of interest
of our parallel program. Event services are e.g. “a process terminates”, “a node



Synergetic Tool Environments 253

is added”, “a message arrives”. Action services fall into two categories, one for
observation, one for manipulation. We offer e.g. “get node status information”,
“show message contents”, “perform single step on process”, and “modify mes-
sage contents”. Consequently, the set of object types that can be dealt with
comprises nodes, processes, threads, message queues and messages. Additional
object types stem from the monitoring system itself: service requests, timers,
and counters.

The interface specification offers a set of basic services that covers all typical
types and the most common activities performed by current tools. For future
adaptations to new tools and new programming paradigms with new objects it
employs a mechanism for extensions to be brought in.

Based on this specification we implemented an OMIS compliant monitoring
system (OCM) for the PVM programming library on workstations clusters as
target architecture [13]. In a first step we put our already existing tools on top
of this software infrastructure [12]. This is already level one of interoperabil-
ity as the tools can execute concurrently, but do not perform coordination or
cooperation.

How does the interface specification support the higher levels of interoper-
ability? For a coordinated co-existence the interface offers a comprehensive set
of event services. Using them, it is possible for a tool to observe object manipula-
tions invoked by other tools. It may then react appropriately. In order to execute
actions without being interrupted, a service for locking is offered. By that a tool
is guaranteed to have an exclusive object access.

Cooperation in form of direct tool-to-tool communication is not yet sup-
ported by OMIS. Although it would be a minor effort to integrate the messaging
mechanism, it is a very complex task to specify the cooperation protocol and the
message format. In addition, no profound knowledge is available what features
are really useful when having cooperating tools. An investigation of this issue
will be preceded by implementing interoperable tools at level two.

Our current research activity concentrates on the definition of co-existence for
various tools. Starting with a comprehensive list of on-line tools we investigated,
which tool combinations do provide synergetic effects. Among them we identified
two combinations that seem to be most promising: the synergy of debugging
and checkpointing and the one of performance analysis and load balancing. The
results of the first will be presented here. Before going into details we will have a
look at other infrastructure concepts supporting tool development and possibly
interoperability.

5 Infrastructure Concepts for Tool Development

There are a few other approaches that aim at providing concepts for monitoring
systems. Some of them also deal with interoperability. Let us first consider those
which concentrate on monitoring.

One such approach is the DAMS environment (Distributed Applications
Monitoring System) [1]. DAMS is already a distributed monitoring system where



254 Thomas Ludwig et al.

a server runs on each node to be controlled and clients (tools) connect to a central
service manager. The individual components of DAMS exhibit well defined inter-
faces for communication. Thus, a multi-vendor environment could be supported.
DAMS is configurable with respect to monitoring services offered. Although it
allows multiple clients to attach to the service manager and also partly supports
indirect tool interactions, it does not integrate interoperability concepts that
satisfy our additional requirements.

The DPCL approach (Dynamic Probe Class Library) [8] is an effort to pro-
vide an API for simplifying tool construction. DPCL daemons act as node local
monitoring systems. They are controlled by the DPCL library which gets linked
to the user’s tools. DPCL is by itself not yet a full distributed monitoring system.
The merge of the node local views has to be provided by the tools themselves.
Consequently, as it does not cover the higher levels of abstraction of our infras-
tructure layer it does also not support tool interoperability. DPCL concentrates
on performance analysis but its functionality allows also any type of manipula-
tion services.

We also find concepts and approaches to support interoperability. Unfortu-
nately, they are not dedicated to parallel run time tool environments.

The most interesting approach for interoperability is ToolTalk [3]. It was
conceived by SunSoft and aims at providing a messaging mechanism for multiple
clients in a distributed environment. ToolTalk is applied in the Common Desktop
Environment to take care of inter-window cooperation. This role would also be
appropriate for a multi-tool environment. ToolTalk’s working paradigm is to
send requests via messages to others that might provide services to handle the
requests. In case of no appropriate client listening the message yields no effect.
The ToolTalk semantics is well adapted to environments with a varying number
of partners potentially being unknown to each other at startup.

Another approach exists in the realm of software engineering. PCTE
(Portable Common Tool Environment) [4] aims at integrating tools of multi-
ple vendors. The concepts in PCTE are based on an object management system,
where the individual objects are specifications, software modules etc. Thus, it
does not fit with our field of application which is event oriented. Nevertheless,
PCTE exhibits clever concepts for interoperability in general which could be
transferred to other areas of interest.

There are also other approaches for multi-client interoperability, e.g. SNMP
and Corba. Their level of abstraction is very high and a link with low-level moni-
toring concepts will necessarily lead to a loss of efficiency in the implementation.
Furthermore, it is not clear how the stated requirements can be met.

With respect to these requirements OMIS/OCM seems currently to be the
most appropriate candidate to support tool interoperability.



Synergetic Tool Environments 255

6 Interoperability of Debugging and Checkpointing

We will now have a closer look at an example environment.
The first set of interoperable tools implemented at our chair were a parallel

debugger (DETOP) [7] and a checkpointing tool that is based on CoCheck [9].
The initial goal was to achieve consistent co-existence of the two tools.

Our OMIS compliant monitoring system (OCM) is powerful enough to sup-
port both kinds of tools. The debugger utilizes services to read and write memory,
stack, etc. and to control the program’s execution (stop, continue, single-step).
The checkpointing tool makes use of OMIS’ checkpoint/restore services. These
are implemented as a tool extension to the monitor and ensure atomicity of the
operations with respect to other services by locking. Thus, OMIS/OCM offers
the possibility to achieve co-existence of the two tools.

This co-existence, however, is up to this point only a non-aware co-existence,
where the two tools don’t know anything about each other. As both kinds of tools
manipulate common objects (e. g. the processes of the parallel application), this
can lead to trouble whenever assumptions are made about the state of such
objects.

To achieve consistent co-existence, additional measures have to be taken.
Either the monitoring system has to hide manipulations from the other tools, or
the tools have to react appropriately in the event of such manipulations. Because
the first approach is far too complicated and expensive in the general case (e. g.
saving “before images” in case a process is killed by one tool), we decided to
follow the second approach.

As a first step, the tools have to be aware of each others critical actions. When
such actions take place, the tools have to react on them to achieve consistent
co-existence. This of course requires some form of communication.

Our approach was to have the monitoring system support this through a spe-
cial form of indirect communication, which fits perfectly well into the
event/action scheme applied by OMIS. Whenever a checkpoint is to be writ-
ten, a will be checkpointed and a has been checkpointed event are triggered at
the appropriate points of time and for each process in question. The debugger
configures the monitoring system to have special actions executed before and af-
ter checkpoints are written1. Through this, modifications done to the processes
can be saved and hidden from the checkpointing system. On the other hand,
whenever a restore takes place, the debugger is noticed and will update its state
(variable views, etc.). Finally, of course, the debugger can initiate checkpoint and
restore actions for the processes being debugged, thus potentially dramatically
shortening the testing and debugging cycle and reducing software development
costs.

More details on the current status of this environment can be found in [11].

1 Of course the same applies to restores



256 Thomas Ludwig et al.

7 Project Status and Future Work

The status of the interface specification is currently fixed. Version 2 was pub-
lished in June 1997. Based on this document we developed an OMIS compliant
monitoring system (OCM) for PVM. First results are available with two debug-
ging tools being based on OMIS.

The next step is to combine already available tools to interoperable tools.
Within the framework of two research grants we will not only finish the combina-
tion of the debugger and the checkpointing facility, but also look into combining
a performance analysis tool and a dynamic load balancer. The design phases of
these projects are finished (see Figure 3). All tools refer to the same monitoring
system OCM as well as to traces produced by it during runtime.

PFSlib

FILE SYSTEM
PARALLEL

THE

DETERMINIZER

THE

OCM

System
Monitoring

ANALYZER

THE THE

LOAD

BALANCER

THE

VISUALIZERDEBUGGER

THE
PERFORMANCE

THE
CHECKPOINT
GENERATOR

CoCheck

Trace Database System Check-

point

PVM

Programming Library

Codex

Fig. 3. The Tool-set environment

OMIS itself will be adapted to the shared memory programming model. This
research is also embedded in a national research program.



Synergetic Tool Environments 257

References

1. J. Cunha and V. Duarte. Monitoring PVM Programs Using the DAMS Approach.
In V. Alexandrov and J. Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Messag Passing Interface, Proc. 5th European PVM/MPI Users’
Group Meeting, volume 1497 of Lecture Notes in Computer Science, pages 273–
280, Liverpool, UK, Sept. 1998. Springer Verlag. 253

2. R. Hood. The p2d2 project: Building a portable distributed debugger. In Proc.
SPDT’96: SIGMETRICS Symposium on Parallel and Distributed Tools, pages 127–
136, Philadelphia, Pennsylvania, USA, May 1996. ACM Press. 248

3. A. Julienne and B. Holtz. ToolTalk & Open Protocols — Inter-Application Com-
munication. A Prentice Hall Title. SunSoft Press, Englewood Cliffs, NJ, 1994.
254

4. F. Long and E. Morris. An Overview of PCTE: A Basis for a Portable Common
Tool Environment. Technical Report CMU/SEI-93-TR-1, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Mar. 1993. 254

5. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-line Monitor-
ing Interface Specification (Version 2.0), volume 9 of LRR-TUM Research Report
Series. Shaker Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-7. 252

6. B. P. Miller, J. M. Cargille, R. B. Irvin, K. Kunchithap, M. D. Callaghan, J. K.
Hollingsworth, K. L. Karavanic, and T. Newhall. The Paradyn parallel performance
measurement tools. IEEE Computer, 11(28), Nov. 1995. 248

7. M. Oberhuber and R. Wismüller. DETOP - An Interactive Debugger for PowerPC
Based Multicomputers. In P. Fritzson and L. Finmo, editors, Parallel Programming
and Applications, pages 170–183. IOS Press, Amsterdam, May 1995. 255

8. D. Pase. Dynamic Probe Class Library (DPCL): Tutorial and Reference Guide,
Version 0.1. Technical report, IBM Corporation, Poughkeepsie, NY, 1998. 254

9. G. Stellner and J. Pruyne. CoCheck Users’ Guide V1.0 – PVM Version. Technische
Universität München, Institut für Informatik, Lehrstuhl für Rechnertechnik und
Rechnerorganisation, Nov. 1995. 255

10. T. Sterling, P. Messina, and J. Pool. Findings of the second pasadena workshop on
system software and tools for high performance computing environments. Techni-
cal Report 95-162, Center of Excellence in Space Data and Information Sciences,
NASA Goddard Space Flight Center, Greenbelt, Maryland, 1995. 248

11. R. Wismüller and T. Ludwig. Interoperable run time tools for distributed systems
– a case study. In PDPTA’99, Juli 1999. Accepted for publication. 255

12. R. Wismüller, T. Ludwig, A. Bode, R. Borgeest, S. Lamberts, M. Oberhuber,
C. Röder, and G. Stellner. The Tool-set Project: Towards an Integrated Tool
Environment for Parallel Programming. In Proc. 2nd Sino-German Workshop on
Advanced Parallel Processing Technologies, APPT’97, Koblenz, Germany, Sept.
1997. 253

13. R. Wismüller, J. Trinitis, and T. Ludwig. OCM — a monitoring system for inter-
operable tools. In Proceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools, pages 1–9. ACM Press, August 1998. 253


	Introduction
	The Concepts of Interoperable Tools
	Levels of Interoperability
	The Infrastructure Concept: OMIS
	Infrastructure Concepts for Tool Development
	Interoperability of Debugging and Checkpointing
	Project Status and Future Work

