The HPC Skill Tree – A Brief Overview

Kai Himstedt – On Behalf of the HPC-CF Board

BoF: International HPC Certification Program
ISC 19, Frankfurt, Germany
June 18, 2019

The HPC Certification Forum: https://www.hpc-certification.org/
Representing HPC Competences by Skills

First Two Levels of the Current Skill Tree
Classification of HPC Competences

- Skills close to the root: Generic
- Skills at leaf level: Specific
 - Granularity: 1.5 to 4h of learning material per leaf
Why Do We Use a Tree?

- Skills are generally built upon one another
- Skills depend on sub-skills
Current Skill Tree Statistics

There are 6 major branches at level 1

- HPC Knowledge (K)
- Performance Engineering (PE)
- Software Engineering / Software Development (SE / SD)
- Use of the HPC Environment (USE)
- Big Data Analytics (BDA) (recently added)
- Administration (ADM) (recently added)

Skills at level 2: \(\approx 31 \); at level 3: \(\approx 50 \); at level 4: \(\approx 5 \)

Skills at the leaf level: \(\approx 66 \)
Definition of a Skill (1)

Each skill consists of

- Unique name / ID
e.g. *Benchmarking / PE3*

- Background information
 - Motivation
 Benchmarking example:
 Benchmarking is essential in the HPC environment to determine speedup and efficiencies of a parallel program
 - Main focus
 Benchmarking example:
 Benchmarking emphasizes on carrying out controlled experiments to measure the runtimes of parallel programs

- Educational level: *Basic, Intermediate, Expert*
Aim ("What is covered by the skill")
Benchmarking example:
comprehending and describing the basic approach of benchmarking to assess speedups and efficiencies of a parallel program

Learning outcomes ("What are the students learning")
Benchmarking example (extract):
measuring runtimes (e.g. /usr/bin/time)
performing experiments using 1, 2, 4, 8, 16, ... nodes
generating a typical speedup plot

List of dependencies from sub-skills
Analogy: targets and dependencies in a Makefile
Using the Skill Tree in the PeCoH Project

K. Himstedt, N. Hübbe, S. Schröder, M. Kuhn, J. Kunkel, T. Ludwig, S. Olbrich, M. Riebisch, H. Stüben

BoF: International HPC Certification Program
ISC 19, Frankfurt, Germany
June 18, 2019

PeCoH is supported by Deutsche Forschungsgemeinschaft (DFG) under grants LU 1335/12-1, OL 241/2-1, RI 1068/7-1
Performance Conscious HPC (PeCoH)

Three Hamburg compute centers involved

- German Climate Computing Center / Deutsches Klimarechenzentrum (DKRZ)
- Regional Computing Center / Regionales Rechenzentrum der Universität Hamburg (RRZ)
- Computer Center of Hamburg University of Technology / RZ der Technischen Universität Hamburg (TUHH RZ)

Major project goals

- Efficient usage of HPC resources by well-trained users
- Reduced efforts for user support

We have the role as content provider for Basic HPC skills
Sets of Skills Can Easily Be Bundled

GSWHC-B Getting Started with HPC Clusters

- K1.1-B System Architectures
- K1.2-B Hardware Architectures
- K1.3-B I/O Architectures
- K2-B Performance Modeling
 - K2.1-B Performance Frontiers ← CURRENT READING POSITION
- K3.3-B Parallelization Overheads
- K3.4-B Domain Decomposition
- K4-B Job Scheduling
- USE1-B Use of the Cluster Operating System
 - USE1.1-B Use of the Command Line Interface
 - USE1.2-B Using Shell Scripts
 - USE1.3-B Selecting the Software Environment
- USE2.1-B Use of a Workload Manager
- PE3-B Benchmarking

Available soon via Hamburg HPC Competence Center (HHCC): https://www.hhcc.uni-hamburg.de/
How to produce content for *Basic* level skills?

- Idea: mapping of existing material to the skill tree
- Selected: course in Parallel Programming (110 slides)
- Assign each slide to the appropriate skill in the tree

Observations

- All slides could be uniquely assigned
- Often blocks of consecutive slides were assigned to the same skill
- Consecutive blocks are "scattered" in the tree
- Slides do not fully cover all learning objectives for every skill in "Getting started with HPC Clusters"
Mapping 110 Slides to the Skill Tree (2)

Findings

- Mapping requires a certain amount of time
 - Overhead for creating and managing a "mapping table"
 - Scanning of skill tree for each slide to find the match
 - Time needed on average: a few minutes per slide

- Original course structure gets lost during mapping
 - Not a problem: focus was on the content of the course

- Further mapping of existing material is necessary to complete "Getting started with HPC Clusters"