UH

iti
2.3 Universitat Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Performance Engineering Concepts and
Software Engineering Concepts for HPC
PeCoH Deliverable D2.1

Nathanael Hubbe and Sandra Schroder

Work Package: WP2
Responsible Institution: Universitat Hamburg
Date of Submission: October 2019

CONTENTS

Contents

(1 Introduction| 3
|2 Performance Engineering Concepts| 4
....................................... 4
2.2 Dimensions for A mentlo 6
2.3 Qualitative Assessment|. o 7
|3 Software Engineering Concepts| 15
....................................... 15
|3.2 Suitability and Benefits of Software Engineering Concepts for the HPC com- |
| MUNIEY| o o e 16
4 Summary 19

Performance Engineering Concepts and Software Engineering Concepts for HPC 2/20
PeCoH Deliverable D2.1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Most scientists write their own scientific software in order to produce research results.
However, the majority of them are not formally trained in performance and software
engineering, since the main motivation of scientists is to perform science and not to
care about writing efficient software in a performance and software engineering sense.
This often results in decreased productivity in the whole process.

The following paragraph describes Task 2.1 as given in the project proposal:

In this task, diverse concepts from the software engineering domain in general and
previous research projects (e.g., SPP 1648) are identified. These concepts will be eval-
uated according their suitability for the HPC community and their applicability to the
scientific application software in each domain. These concepts can include but are not
limited to: 1) performance patterns and antipatterns, 2) efficient algorithms and data
structures, 3) optimized data exchange technologies for software component interfaces,
4) software architectures optimized for performance, 5) migration strategies towards
improved software architectures, 6) performance-aware deployment strategies.

In this report, concrete performance engineering and software engineering concepts
are collected that can help scientists to improve the development of scientific software.
Additionally, these concepts are evaluated against selected criteria in order to show the
benefits of those concepts when applied in scientific programming.

Performance Engineering Concepts and Software Engineering Concepts for HPC 3/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

Chapter 2

Performance Engineering
Concepts

In the following, selected performance engineering concepts are listed in brief that could
help scientists to improve the performance of their software. Additionally, the advan-
tages and disadvantages of the concepts are discussed. In the subsequent section, the
benefits of these concepts are qualitatively assessed based on specified criteria.

2.1 Concepts

— In-situ methods
The analysis of data happens at the same time as the data creation, i.e., during the
run of a simulation. This means data does not need to be stored.

Advantages:

- reduction of storage requirements
- quick feedback from running process

- supports interactive data exploration and analysis
Disadvantages:

- change of analysis requires rerunning of the data generation
- significant implementation effort
— Big data/statistical methods

Tuning of optimization parameters using statistical information to drive decision
processes.

Advantages:

- may deliver better results than hand-tuning or without tuning
- application may be transparent

- may provide insights into system behavior
Disadvantages:

- significant implementation effort

- signal selection is crucial for success

Performance Engineering Concepts and Software Engineering Concepts for HPC 4/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

- possibly bad performance when encountering new software
— Machine Learning/Al methods
Tuning of optimization parameters using Al algorithms like neural networks.

Advantages:

- may deliver better results than hand-tuning or no tuning
- application may be transparent

- likely more robust against new software than statistical methods
Disadvantages:

- significant implementation effort

- signal selection and algorithm design is crucial for success

- algorithm is black box that does not help understanding the system
— Domain Specific Languages (DSL)

Creation of dialects of programming languages designed to support programming
within a specific domain.

Advantages:
- boilerplate code that is common within the target domain can be abstracted
away
- implementation of language constructs may depend on hardware, and exploit
its potential without source code adaption

Disadvantages:

- performance problems become compiler problems
- abstraction means that understanding of performance problems becomes harder
- focus on single domain may unduly constrain applicability, hindering progress

in science

— Compiler auto parallelization
Methods of letting the compiler compile a sequential program into a parallelized
executable.

Advantages:

- easy use of available hardware

- may significantly increase the amount of parallel programs run on supercom-
puters

- may provide backends for thread/process/hybrid parallelization
Disadvantages:

- need to perform full parallelization, otherwise Amdahl’s law strikes
- parallelization may be very inferior to carefully hand parallelized code

- parallelization of I/O heavy programs may be counterproductive

Performance Engineering Concepts and Software Engineering Concepts for HPC 5/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

— Compiler auto parallelization for GPUs
Methods of letting the compiler generate code for GPU acceleration.

Advantages:

- likely easier to implement than auto parallelization
- easy use of available hardware

- may significantly increase GPU usage in supercomputers
Disadvantages:

- generated code likely inferior to hand-written GPU code

- it is virtually impossible for the compiler to know which parts will profit from
GPU offloading

- may lead to programs requiring GPU that are I/O bound

— Performance warnings and feedback
Methods of providing feedback on performance issues, preferably directly from
the compiler. For instance, the compiler can run analyses that distinguish memory
bound loops from computation bound loops. If applicable to the loop, the compiler
may also output the chains of dependent operations that are likely to limit the
performance.

Advantages:
- the produced output may be relatively easy to turn into significant perfor-
mance gains by the programmer

- the produced output may help sharpen the understanding of the CPU by the
programmer

- can be implemented incrementally

Disadvantages:

requires the user to care about performance

depends on an accurate CPU model

the amount of achievable speedup is generally limited

may easily drown the user in information

2.2 Dimensions for Assessment

The following areas which are influenced by the use of the above concepts are used for
the assessment:

— Investment Costs
Any development that needs to be done to create the tools that are independent of
the concrete application of the method. For a DSL, this would include the definition
and standardization of the DSL, along with the implementation of a compiler and
necessary runtime libraries.

— Application Costs
Any development that needs to be done on an application by application basis. For
a DSL, this would be the effort of actually using DSL constructs in an application.

Performance Engineering Concepts and Software Engineering Concepts for HPC 6/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

— CPU Usage
The total amount of CPU time that is used for an application. This includes com-
pilation, computation, idling while waiting for resources (I/O, network), and any
other overhead that blocks a CPU.

— Energy Consumption
The total amount of energy that is required to produce a result. This is clearly
dominated by CPU usage, but other parts of the system must also be considered
when they become relevant.

— Storage Space
The integral of data size on permanent storage over time.

— Time To Results
The wall-clock time difference between the formulation of the problem, and the ac-
tual display of actionable results. This time span includes any human development
effort needed to tackle the problem at hand, as well as all times spent aggregating
data, computing data, storing data, post-processing data, and visualizing data.

— Programmability
The ease of writing software that makes use of the concept.

— Maintainability
The ease of maintaining software that makes use of the concept. Mainly this
depends on code readability, along with the predictability of the effects of small
changes that are made without understanding the whole system.

— Flexibility
How broad is the field of natural applications of the concept? "Natural" means that
the concept must fit the application well, and not require significant workarounds
to make the application match the concept.

2.3 Qualitative Assessment

In this section, we try to qualitatively assess the different concepts by comparing them
according to the criteria. The assessment uses the dimensions defined above on the
scale --, -, 0, +, ++. For consistency, + and ++ always mean better, while - and -- always
mean worse.

For example, writing a fully featured compiler is a major investment cost, which calls
for a -- because it is a cost. Likewise, a reduction of CPU time to 42% calls for a +
assessment, because faster is better.

This assessment is very rough and qualitative. A zero means little impact, the factor
of effect should be less than two if applicable. For investments, this should be less than
a person year. A + or - means significant impact, the factor of effect should be between
two and ten if applicable. For investments, this should be between a person year and
five person years. A ++ or -- means major impact, the factor of effect should be larger
than ten. For investments, this should be more than five person years.

Table[2.1] gives a quick overview of our assessments, the following list will detail our
arguments for each assessment.

Performance Engineering Concepts and Software Engineering Concepts for HPC 7/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

o
S
i)

3 3 g 2 £

o o = © = = B

© ° 2 3 2 & =

= = <] Q Q
s & 9 8 & 2 E E op
E E 7] (] o E = 5‘
58 P 5 9 = c 2 =
2 = 5 g g o & E 5
> e A =) g e &8 9
g < O m 0 & A=
in-situ methods 0 -t -+t -+ O 0 -
statistical methods - 0 + 0 0 0O O O
AI methods - 0 0 0 0 0O 0 O
DSL -..- 4+ -..+ -..+ O + + + -
auto parallelization - + -...0 --..0 0O 0.4+ 0 0 +
auto GPU acceleration -- + + + 0 0..+4+ O O +
performance warnings - - + + 0 0 o - 0

Table 2.1: Overview of our qualitative assessments of the different concepts for improv-
ing performance of scientific applications.

— In-situ methods

0

Investment Costs

In-situ methods are a concept that requires rewriting each application in a way
that allows full processing of the data where it happens to be stored or gen-
erated. This per-application redesign cannot be outsourced to general tools.
Thus, there is little general investment that can be done to reduce the work-
load of redesigning the applications.

Application Costs

Each application that is to use in-situ methods must have the relevant parts
redesigned and rewritten to implement them. This is a major change for many
applications, as it touches an applications’ entire I/O behavior.

CPU Usage

In-situ methods avoid storing results, and thus idling of the CPU while it’s wait-
ing for I/0O. However, this comes at the price of not having the intermediate
data stored for other types of analysis. Thus, the data may need to be re-
computed several times to achieve the same analysis results, especially when
some methods of data analysis are prompted by the results of more general
types of analysis. Careful planning of the analysis may reduce this trade-off,
but the fact remains that recomputation may become necessary where non-in-
situ workflows would just reuse intermediate data. Thus CPU usage may see a
major increase (two recomputations or more) or decrease significantly (single
pass with avoided I/O time), or anything in between.

Energy Consumption

This largely is the same as the effect on CPU usage, however the savings may
be larger as the storage space is used less. This may allow using less spinning
disks, and thus further reduce the energy consumption. Nevertheless, if re-
sults have to be recalculated repeatedly, all the savings are gone, and a large
negative impact remains.

Performance Engineering Concepts and Software Engineering Concepts for HPC 8/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

++ Storage Space
Avoiding the need to store intermediate data may provide a major decrease in
disk storage usage.

--...+ Time To Results
The ability to analyse and/or visualize data right when it is produced may sig-
nificantly decrease the time until the scientist sees first results of a simulation
run. On the other hand, running a second analysis based on intermediate data
requires restarting the entire simulation to reproduce the intermediate data.
This may add a major delay until the results are visible.

0 Programmability
On-line analysis is not inherently easier or harder to program than analysis on
stored data. It’s "simply" replacing I/O with abstractions to facilitate immedi-
ate analysis of results.

0 Maintainability
As the code is not inherently more or less readable, so is maintenance not
inherently easier or harder.

- Flexibility
In-situ methods may loose the flexibility of running any analysis post-mortem
on the produced data.

— Statistical methods

- Investment Costs
Statistical methods require a significant investment into creating the software
that analyzes the performance data, and which adjusts tuning parameters ac-
cordingly. This should be a one-time investment which produces payoffs for
any application.

0 Application Costs
As statistical tuning methods are expected to work system-wide, little or no
adjustment of application code should be necessary.

+ CPU Usage
The goal of statistical methods is to increase the efficiency of resource us-
age, i.e., either CPU time and/or idling while processes are waiting for other
operations (I/O or communication) to complete.

+ Energy Consumption
This follows the CPU usage.

0 Storage Space
Unless they find use within data compressors, statistical methods have no
impact on the usage of storage space.

0 Time To Results
Time to results should improve along with CPU usage reduction. However,
time to results includes more than plain CPU usage (like development and
queue times), so the impact is not as significant as for the CPU usage.

0 Programmability
As application codes don’t change, no impact on their programmability is ex-
pected.

Performance Engineering Concepts and Software Engineering Concepts for HPC 9/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

0 Maintainability
As application codes don’t change, no impact on their maintainability is ex-
pected.

0 Flexibility
As application codes don’t change, no impact on their flexibility is expected.

— Al methods

- Investment Costs
Al methods require a significant investment into creating the software that
analyzes the performance data, and which adjusts tuning parameters accord-
ingly. This should be a one-time investment which produces payoffs for any
application.

0 Application Costs
As Al tuning methods are expected to work system-wide, little or no adjust-
ment of application code should be necessary.

0 CPU Usage
The goal of Al methods is to increase the efficiency of resource usage, i.e.,
either CPU time and/or idling while processes are waiting for other operations
(I/O or communication) to complete. However, at the same time Al methods
themselves are computationally expensive, both for training and application
of the neural networks, reducing the achievable impact. This is why we do not
see a significant improvement for CPU usage.

0 Energy Consumption
This follows the CPU usage.

0 Storage Space
Unless they find use within data compressors, Al methods have no impact on
the usage of storage space.

0 Time To Results
Time to results should improve along with CPU usage reduction. However,
time to results includes more than plain CPU usage (like development and
queue times), so the impact is not as significant as for the CPU usage.

0 Programmability
As application codes don’t change, no impact on their programmability is ex-
pected.

0 Maintainability
As application codes don’t change, no impact on their maintainability is ex-
pected.

0 Flexibility
As application codes don’t change, no impact on their flexibility is expected.

— DSL

--...- Investment Costs
Use of a Domain Specific Language requires the development of a suitable
compiler for it first. Obviously, if the DSL is very similar to an established lan-
guage for which free (FOSS) compilers are available, the required effort may
be relatively small. However, the more domain specific features are included,

Performance Engineering Concepts and Software Engineering Concepts for HPC 10/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

and the more complex these features get, the greater will be the required
effort for the compiler.

+ Application Costs
The aim of a DSL is to make the development of the application code easier.

-...+ CPU Usage

Depending on the goal of the DSL, CPU usage may either increase or decrease
due to the use of a DSL. It may increase if the DSL is only geared towards
usability from a programmers perspective, introducing costly code into the
executable. If the DSL provides garbage collection, for instance, the result-
ing memory allocating code will require much more CPU time compared to
the same program written in C. Providing garbage collection is a sensible fea-
ture to want from a programmers perspective, as it does preclude important
classes of bugs, but it has a significant run time cost. On the other hand, a DSL
may choose to provide abstractions that allow it to generate more efficient
code. Such a DSL would help reducing the CPU usage of the applications.

-...+ Energy Consumption
This follows the CPU usage.

0 Storage Space
DSLs are generally not expected to change the storage of results.

+ Time To Results
The declared goal of a DSL is to provide abstractions to the programmer that
are closer to the problem domain that they work for. This added ease should
provide for faster development.

+ Programmability
Abstractions that are a better/closer fit to the problem domain should provide
for easier, quicker programming with more concise resulting code.

+ Maintainability
Abstractions that are a better/closer fit to the problem domain should provide
for more concise and readable resulting code.

- Flexibility
The abstractions of a DSL will have the effect of a vendor lock-in. Once an ap-
plication uses the abstractions provided by a specific DSL, it will become hard
to port the application to another language. The stronger the abstractions of
the DSL, the more thorough the lock-in becomes. Thus, an application that
makes heavy use of a high-level DSL will be chained to the fate of the DSL
forever. If the DSL does not support a platform, so won’t the application. If
the DSL is not maintained to provide top performance on current machines,
the application won’t show top performance.

— Compiler Auto Parallelization

-- Investment Costs
Auto parallelization by the compiler requires writing a compiler that can do
it. Unfortunately, this compiler needs to be able to perform auto paralleliza-
tion on virtually every part of the application. If the resulting executable would
only be partially parallelized, Amdahl’s law would strike and immediately limit
the maximum parallelization. (A 10x speedup through parallelization requires
parallelization of more than 90% of the application’s computations, and to put

Performance Engineering Concepts and Software Engineering Concepts for HPC 11/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

a single 36 core server to good use, no more than 2% of the code may be left
sequential.) As such, there is simply no way of implementing this incremen-
tally: Either the compiler can do parallelization of virtually everything, or it
will be useless on modern supercomputers. The consequence is, that the full
compiler development has to be paid for up-front.

+ Application Costs
The upshot of automatic parallelization is, that application codes may be left
unchanged and still profit from parallelism.

--...0 CPU Usage
Any parallelization incurs overheads. Automatic parallelization is no excep-
tion, so the total CPU time consumption will go up.

--...0 Energy Consumption
This follows the CPU usage.

0 Storage Space
Auto parallelization is not expected to change data storage formats on disk.

0...++ Time To Results
This is, what any parallelization aims to improve. Nevertheless, success de-
pends heavily on what the compiler can do for the given code, and is not
guaranteed. A central data structure that happens to be partitioned in a sub-
optimal way can kill all the performance gains.

0 Programmability
As application codes are not changed from their sequential versions, auto par-
allelization has no impact on programmability.

0 Maintainability
As application codes are not changed from their sequential versions, auto par-
allelization has no impact on maintainability.

+ Flexibility
As auto parallelization only adds a compilation mode, it adds the flexibility to
run sequentially written applications in a parallel fashion.

— Compiler Auto Parallelization for GPUs

-- Investment Costs

Like auto parallelization, auto GPU acceleration requires a massive invest-
ment into the compiler infrastructure. Unlike parallelization, GPU accelera-
tion can provide gains without the need to be able to handle all codes equally
well. However, the auto GPU acceleration needs to be good enough to justify
running the resulting executable on a machine with a GPU. Thus, the require-
ment to provide comprehensive transformation of the code is less strict, but
still very significant.

+ Application Costs
As the application does not need to change, its developments costs stay the
same.

+ CPU Usage
Any work that is offloaded to the GPU does not need to be done by a CPU.
Nevertheless, GPU accelerated processes still need a CPU, even when that is
only idling while it is waiting for the GPU to do its work.

Performance Engineering Concepts and Software Engineering Concepts for HPC 12/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

+ Energy Consumption
With GPU acceleration, work is moved from CPUs to GPUs. Since GPUs are
typically much more energy efficient than CPUs, this move should result in a
significant reduction of energy consumption. The effect is smaller than the
reduction of the CPU usage, as the GPU also needs power.

0 Storage Space
GPU acceleration has nothing to do with storage formats.

0...++ Time To Results
This is one of the goals of GPU acceleration, to decrease the time to results.
This works especially well for visualizations, providing massive benefits, and
can work well for scientific codes as well. The question remains, how well
compiler based auto acceleration can utilize the GPU. If it fails to use it well,
the result may still be that the application runs faster without acceleration.

0 Programmability
No change of source code, so no change in programmability.

0 Maintainability
No change of source code, so no change in maintainability.

+ Flexibility
Auto GPU accelerations adds an option to the compilation, providing the flexi-
bility to run efficiently on hardware with accelerators.

— Performance Warnings

- Investment Costs
Like other compiler based concepts, performance warnings require an up-
front investment into compiler development. However, they can be imple-
mented incrementally, providing one feature after another, each one providing
benefits for code performance.

- Application Costs
Since performance warnings are not directly changing the code translation,
but rather give feedback to the developer on how to best improve the per-
formance of their code, the application development itself is burdened with
actually implementing improvements.

+ CPU Usage
The aim of performance warnings is to help developers use the available com-
puting resources more efficiently. However, the gain that can be achieved is
typically limited, as the suggestions will be more of the micro-optimization
kind than of the large scale algorithmic-optimization kind.

+ Energy Consumption
This follows the CPU Usage.

0 Storage Space
Performance warnings have nothing to do with storage formats.

0 Time To Results
While applications may run faster due to the optimizations suggested by per-
formance warnings, these gains are set off by the need to implement those
optimizations first. Thus, we expect the gains not to be significant.

Performance Engineering Concepts and Software Engineering Concepts for HPC 13/20
PeCoH Deliverable D2.1

CHAPTER 2. PERFORMANCE ENGINEERING CONCEPTS

0 Programmability
Performance warnings only add a feedback to facilitate better performing pro-
grams, they do not change the way that an application is designed or imple-
mented.

- Maintainability
However, the micro-optimizations suggested by performance warnings may
decrease the readability of the finished code, hurting its maintainability.

0 Flexibility
Performance warnings do not change the way the compiler generates the ex-
ecutable from its source, so no impact on flexibility is expected.

Performance Engineering Concepts and Software Engineering Concepts for HPC 14/20
PeCoH Deliverable D2.1

CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS

Chapter 3

Software Engineering Concepts

In an iterative process, we collected software engineering concepts that could help scien-
tists in writing efficient software and to improve their software engineering processes.
In the following, the categories summarizing the collected software engineering con-
cepts are listed and described. This section refers to the first step which was performed
as described in Task 2.1.

3.1 Concepts

— Programming Concepts for HPC
Scientists need to understand algorithms and data structures especially with re-
spect to parallelization independent of whether implementing for shared or mes-
sage passing systems in order to write efficient scientific software. This includes
to understand programming languages that are widely used in HPC.

— Programming Best Practices for HPC
This category summarizes software development best practices that help scien-
tists to develop high-quality scientific software. This includes knowledge about
Integrated Development Environments (IDEs), debugging, programming idioms,
logging concepts, and exception handling.

— Software Configuration Management

Version control and change management in scientific development processes is as
important as in traditional software engineering processes. Scientific applications
are characterized by frequent changes due to improvements and modifications in
mathematical models. That is why we have included this category for summariz-
ing software configuration management concepts. This category encompasses ba-
sic terminologies and concepts of version control, issue and bug tracking, release
management, and deployment management.

— Agile Software Development
Scientific computing can benefit from agile development practices, since scien-
tific research and the development of scientific software have similarities with pro-
cesses following the agile principles, namely responsiveness to change and col-
laboration. This category suggests to include test-driven development and agile
testing, extreme programming, and SCRUM to the portfolio of a scientists who
write scientific software.

Performance Engineering Concepts and Software Engineering Concepts for HPC 15/20
PeCoH Deliverable D2.1

CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS

— Software Quality
Scientific software is often written by a team of scientists. Additionally, scientific
software is reused and modified by other teams (maybe from other projects). This
means that the source code needs to be readable, reusable, and testable, i.e., the
source code needs to be of high quality. This category summarizes concepts related
to software quality including coding standards, code quality, refactoring, and code
reviews.

— Software Design and Software Architecture

Scientists often neglect to consider the software on a higher level of abstraction,
i.e., software architecture and design. This category therefore includes concepts
that should help scientists to understand the importance and impact of software
architecture during software development. Additionally, this category includes ba-
sic knowledge about systematic approaches in order to appropriately collect and
analyze requirements for the application and in order to develop an appropriate
software architecture based on these requirements. Following a systematic ap-
proach helps the user to significantly improve quality of scientific software.

— Documentation
This category summarizes documentation practices for all necessary phases in the
development process, e.g., requirements, software architecture, source code, and
user documentation. Documentation is an important artifact (and activity) for en-
abling reproducibility of scientific results.

3.2 Suitability and Benefits of Software Engineering Con-
cepts for the HPC community

In this section, the suitability of the previous described software engineering concepts
in the context of HPC is described (second step of Task 2.1). For this, we define and de-
scribe common requirements that are characteristic for software development in HPC.
For these requirements, we qualitatively assess the suitability and benefits of the se-
lected concepts. The assessment is supported by resources found in literature that re-
ports about experiences applying specific software engineering techniques in the context
of scientific computing.

The overall goal is to increase the productivity of scientists in developing scientific
software. This goal is further divided into the following requirements:

— Credibility of Research Results

Verification and validation plays an important role in scientific computing. Exten-
sive checks of the scientific model and the code implementing the model are neces-
sary to ensure the correctness of the source code and, consequently, the credibility
of research results. That is why, scientific programmers should be aware of test-
ing methods, among others, that help to detect crucial faults and errors in their
code. Logging can help to record and to subsequently analyze faulty behavior in
the software system. Exception handling allows to recover software from unfore-
seen situations.

supported by: Test-driven Development and Agile Testing, code review, documen-
tation, Version Control, debugging, Logging, exception handling, issue and bug

Performance Engineering Concepts and Software Engineering Concepts for HPC 16/20
PeCoH Deliverable D2.1

CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS

tracking

evidence from literature: [KB18], [CR11], [FPG"11], [KTH11], [Roy09], [KS08I,
[HC15]

— Reproducibility of Research Results
Reproducibility is an essential requirement in the scientific process [IT18]]. A result
is said to be reproducible if another researcher can take the original code and input
data, execute it, and re-obtain the same result [PDZ06]. Sufficient details of a
computation must be available, so that the results can be verified, reproduced, and
extended by other researchers. Reproducibility also allows researchers to build
upon the work of another research.

Reproducibility 1) requires a program works the way it should, 2) knowing the
input conditions and system used to produce the results, and 3) recognizing and
tracking program bugs.

The practices Test-driven Development and Agile Testing supports to ensure that
the program works according to the specified requirements, e.g., produces the
expected results.

Documentation greatly helps to ensure the reproducibility of the results. For ex-
ample, researchers should document the libraries, compilers, and runtime systems
that must be installed and configured in order to run the experiment. Literate
programming - as implemented in the Jupyter ProjectE]— combines documentation,
code, data, mathematical equations, plots, and rich media in notebooks that can be
shared by researchers to enable reproducibility.

Release management and version control - as additional exemplary methods - also
supports reproducibility. The purpose of release management is to ensure that a
consistent method of deployment is followed whereas this process is ideally doc-
umented and supported by automatic processes that can be reproduced easily. It
ensures that only tested and accepted versions of hardware and software are in-
stalled.

supported by: Test-driven Development and Agile Testing, software configuration
management, code review, documentation

evidence from literature: [[T18], [BDFRO6], [HC15]

— Reusability of Source Code
Scientific software must be adapted for different execution environments, prob-
lem sets, and available resources to ensure its efficiency and reliability. Normally,
scientific code is not developed to be reused by other researchers which makes
the code hard to reuse and to adapt. That is why scientific programmers need to
manually implement solutions that are again hard to maintain and reuse.

Best practices and principles, e.g., SOLID, from object-oriented programming can
support programmers to write reusable code. It may help programmers to avoid

'https://jupyter.org/

Performance Engineering Concepts and Software Engineering Concepts for HPC 17/20
PeCoH Deliverable D2.1

CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS

bad practices like code duplication and to use code structures that promote reusable,
modular, and extendable code structures.

Documentation, e.g., in form of code comments can help to reflect the reasons of
the decisions that were made during programming. Valueable information about
how a given parameter was chosen, why a specific library was used (and not an-
other one), can be captured in code comments. For this, the programmer can make
use of code comment style guides for a uniform way of documenting the code.

supported by: Software quality, Documentation, Release Management, Software
Design and Software Architecture

evidence from literature: [KTVRI11], [FHHS16], [BDFRO6], [HC15[

Performance Engineering Concepts and Software Engineering Concepts for HPC 18/20
PeCoH Deliverable D2.1

CHAPTER 4. SUMMARY

Chapter 4

Summary

In this report, we have outlined a collection of performance engineering and software
engineering concepts. With this collection we aim for supporting scientists in improving
the performance of their scientific software and increasing the productivity of the soft-
ware development. We have assessed each concept according to selected criteria and
have shown qualitatively that these concepts can greatly support the above mentioned
aspects.

This collection is not complete. Nevertheless, it represents a good starting point
for a further refinement and identification of performance engineering and software
engineering concepts. In the deliverable D2.2, we report on our experiences on applying
a selected set of concepts on a real-world project. The success story described in D2.2
shows that scientists can already benefit from integrating simple software engineering
techniques, e.g., adhering to coding styles or refactoring.

Acknowledgement

The PeCoH project has received funding from the German Research Foundation (DFG)
under grants LU 1353/12-1, OL 241/2-1, and RI 1068/7-1.

UH
L2 ¥ Universitdit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Performance Engineering Concepts and Software Engineering Concepts for HPC 19/20
PeCoH Deliverable D2.1

BIBLIOGRAPHY

Bibliography

[BDFR0O6] Susan M Baxter, Steven W Day, Jacquelyn S Fetrow, and Stephanie J Reisinger.

[CR11]

Scientific software development is not an oxymoron. PLOS Computational
Biology, 2(9):1-4, 09 2006.

Thomas Clune and Richard Rood. Software testing and verification in climate
model development. IEEE software, 28(6):49-55, 2011.

[FHHS16] Jorg Fehr, Jan Heiland, Christian Himpe, and Jens Saak. Best practices for

[FPGT11]

[HC15]

[IT18]

[KB18]

[KS08]

[KTH11]

[KTVR11]

[PDZ06]

[Roy09]

replicability, reproducibility and reusability of computer-based experiments
exemplified by model reduction software. CoRR, abs/1607.01191, 2016.

P. Farrell, Matthew Piggott, G. Gorman, D. Ham, Cian Wilson, and T. Bond. Au-
tomated continuous verification for numerical simulation. Geoscientific Model
Development, 4, 05 2011.

Dustin Heaton and Jeffrey C. Carver. Claims about the use of software engi-
neering practices in science: A systematic literature review. Information and
Software Technology, 67:207 — 219, 2015.

Peter Ivie and Douglas Thain. Reproducibility in scientific computing. ACM
Comput. Surv., 51(3):63:1-63:36, July 2018.

Upulee Kanewala and James M. Bieman. Testing scientific software: A sys-
tematic literature review. CoRR, abs/1804.01954, 2018.

Diane Kelly and Rebecca Sanders. The challenge of testing scientific software.
In Proceedings of the 3rd annual conference of the Association for Software
Testing (CAST 2008: Beyond the Boundaries), pages 30-36. Citeseer, 2008.

D. Kelly, S. Thorsteinson, and D. Hook. Scientific software testing: Analysis
with four dimensions. IEEE Software, 28(3):84-90, May 2011.

Pilsung Kang, Eli Tilevich, Srinidhi Varadarajan, and Naren Ramakrishnan.
Maintainable and reusable scientific software adaptation: Democratizing sci-
entific software adaptation. In Proceedings of the Tenth International Confer-
ence on Aspect-oriented Software Development, AOSD ’11, pages 165-176,
New York, NY, USA, 2011. ACM.

Roger D Peng, Francesca Dominici, and Scott L. Zeger. Reproducible epidemi-
ologic research. American journal of epidemiology, 163(9):783-789, 2006.

Christopher Roy. Practical software engineering strategies for scientific com-
puting. 19th AIAA Computational Fluid Dynamics Conference, 06 2009.

Performance Engineering Concepts and Software Engineering Concepts for HPC 20/20
PeCoH Deliverable D2.1

	Introduction
	Performance Engineering Concepts
	Concepts
	Dimensions for Assessment
	Qualitative Assessment

	Software Engineering Concepts
	Concepts
	Suitability and Benefits of Software Engineering Concepts for the HPC community

	Summary

