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Making the best use of HPC in Earth simulation requires storing and manipulating vast
quantities of data. Existing storage environments face usability and performance challenges
for both domain scientists and the data centers supporting the scientists.
These challenges arise from data discovery/access patterns, and the need to support complex
legacy interfaces. In the ESiWACE project, we develop a novel I/O middleware targeting, but
not limited to, earth system data. This deliverable sheds light upon the technical design of
the ESD middleware, and the user perspective and implications when using the middleware.
Its architecture builds on well established end-user interfaces but utilizes scientific metadata
to harness a data structure centric perspective.
In contrast to existing solutions, the middleware maps data structures to available storage
technology based on several parameters: 1) A data center specific configuration of available
hardware with their characteristics; 2) The intended usage pattern explicitly provided by the
user and implicitly by the structure of the data.
This allows to exploit performance characteristics of a heterogeneous storage environment
more efficiently.
This deliverable provides the background on data representations and description formats
commonly used in earth system modeling. The document isolates the key requirements for an
earth system middleware and collects numerous use-case outlining the benefit to existing and
anticipated workflows and technologies. Finally, a detailed initial design for the architecture
of the earth system middleware is proposed and documented.
The document is not intended to describe all components completely but provides a high-
level overview that is necessary to build a first prototype as it is planned in the next phase
of the ESiWACE project. During this development, the design will be adjusted to match
the prototype; the final version of the design document will be delivered with the end of the
project.
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CHAPTER 1. INTRODUCTION

1. Introduction

This document provides the architecture for our new Earth System Data Middleware (ESDM)1,
aimed at deployment in both simulation and analysis workflows where the volume and rate
of data leads to performance and data management issues with traditional approaches. This
architecture is one of the deliverables from the Centre of Excellence in Weather and Climate
in Europe (http://esiwace.eu).

1.1. General Objectives

In this section we outline the general challenges, and some specific challenges which this work
needs to address. Detailed consequential requirements appear in Chapter 3.

1.1.1. Challenges and Goals

There are three broad data related challenges that weather and climate workflows need to
deal with, which can be summarised as needing to handle

1. the velocity of high volume data being produced in simulations, and

2. the economic and performant persistence of high volume data,

3. high volume data analysis workflows with satisfactory time-to-solution.

Currently these three challenges are being addressed independently by all major centres, the
aim here is to provide middleware architecture that can go someway to providing economic
performance portability across different environments.
There are some common underlying characteristics of the problem:

1. I/O intensity (volume and velocity). Multiple input data sources can be used in
any one workflow, and the volume and rate of output can vary drastically depending
on the problem at hand. In weather and climate use-cases,

• during simulations, input checkpoint data needs to be distributed from data sources
to all nodes and high volume output is likely to come from multiple nodes (although
not necessarily all) using domain decomposition and MPI.

• existing analysis workflows primarily use time-decomposition to achieve paralleli-
sation which has implications for input data storage, and output data organisation
— but at least is easy to understand. More complex parallelisation strategies for
analysis are being investigated and may mix multiple modes of parallelisation (and
hence routes to and from storage).

2. Diversity of data formats and middleware. In an effort to allow for easier ex-
change and inter-comparison of models and observations, data libraries for standardized
data description and optimized I/O such as NetCDF, HDF5 and GRIB were developed
but many more legacy formats exist. Many I/O optimizations used in common li-
braries do not adequately reflect current data intensive system architectures, as they
are maintained from domain scientists and not computer scientists.

1Depending on the context, we may use as full name ESD middleware.
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3. Code portability. Code is long-living, it can potentially live for decades — with some
modules moving like DNA down through generations of new code. Historically such
modules and parent codes have been optimised for specific supercomputers and I/O
architectures but with increasingly complex systems this approach is not feasible.

4. Sharing of data between many stakeholders. Many new stakeholders are using
data on multiple different systems. As a consequence the underlying data systems need
to support that multi-disciplinary research through shared, interoperable interfaces,
based on open standards, allowing different disciplines to customise their own workflows
over the top.

5. Time criticality and reliability. Weather and climate applications often need to be
completed in specific time windows to be useful, and all data must be reliably stored
and moved — there can be no question of data being corrupted in transit or in the
storage.

There are some conclusions one can draw from these general challenges: Data systems needs
to scale in such a way as to support expected data volume and velocity with cost-effective and
acceptable data access latencies and data durability — and do so using mechanisms which
are portable across time and underlying storage architectures. So the goals of any solution
should be to be:

1. Performant — coping with volume/velocity and delivering adequate bandwidth and
latency.

2. Cost-Effective — affordable in both financial and environmental terms at exascale.

3. Reliable — storage is durable, data-corruption in transit is detected and corrected.

4. Transparent — hiding specifics of the storage landscape and not requiring users to
change parameters specifically to a given system.

5. Portable — should work in different environments.

6. Standards based — using interfaces, formats and standards which maximise re-usability.

Of course it is clear that some of these goals are contradictory: performance, transparency,
and portability are not necessarily simultaneously achievable, but we should aim to maximise
these. It is also clear that a storage system may not be able to deliver these goals for all
possible underlying data formats.
There are two more important objectives that do not reflect the domain, but reflect the
desire for any solution to be maintainable and actually used. To that end, reflecting the
characteristics of software which is widely deployed, solutions should also:

7. be easily maintainable and exploiting as much as possible other libraries and compo-
nents (as opposed to implementing all capabilities internally), and

8. involve open-source software with an open-development cycle.

1.2. Architecture Philosophy and Methodology

A middleware approach, providing new functionality which insulates applications from stor-
age systems provides the only practical solution to the problems outlined in Section 1.1.1. To
that end we have designed the “Earth System Data” middleware. This new middleware needs
to be inserted into existing workflows, yet it must exploit a range of existing and potential
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storage architectures. It will be seen that it also needs to work within and across institutional
firewalls and boundaries.
To meet these goals, the design philosophy needs to respect aspects of the weak coupling
concepts of a microservices web design, of the stronger coupling notions of distributed systems
design, and the tight-coupling notions associated with building appliances (such as those sold
which provide transparent gateways between parallel file systems and object stores).
The design philosophy also needs to reflect the reality that while we have a good sense of the
general requirements, specific requirements are likely to become clearer as we actually build
and implement the ESD. It is also being built in a changing environment of other standards
and tools - for example, the advent of the Climate and Forecast conventions V2.0 is likely
to occur during this project, and that could have significant impact on data layouts, which
might impact the ESD middleware design. Similarly, the new HDF server library being built
by the HDF Group is likely to be an important component of the ESD middleware thinking,
as are the changing capabilities of both the standard object APIs such as S3 and Swift, and
the proprietary APIs of vendors (including, but not limited to that of our partner, Seagate).
All of these trends mean that the design philosophy, and the design itself, need to be flexible
and responsive to evolving understanding and external influences. One direct consequence of
this is that we might expect different components of the ESD middleware to be themselves
evolving at different rates: given the complexity of the problem, it is unlikely that a coherent
overall architecture can be mandated and controlled and all components deployed simultane-
ously at all sites and in all clients. To that end, our underlying philosophy for all components
will conform to Postel’s Law:

Be conservative in what you send, be liberal in what you accept.

We architect the ESD middleware system using a modified version of the “4+1 view system”
[Phi95] consisting of the four primary views (described in the following chapters):

1. The Logical View which

a) describes the functionality needed, and

b) defines the data models underlying any information artifacts needed to implement
that functionality, and

c) shows the logical components of which the ESD is composed of.

For ESD middleware, the relevant data models will include those necessary to import
and export data, to describe backend components, and to configure the layout of ESD
data on those backend components.

2. The Physical View which describes how the software components and libraries within
the ESD middleware can be deployed on the hardware that the ESD middleware sup-
ports (so of necessity it defines what hardware is needed, and what it would mean for
hardware to be ESD compliant).

3. The Process View which

a) defines active processes and threads that drive and control the software, and how
they interact. This describes services to deploy and their communication. How
these services are managed from both the administration and user perspectives is
part of the logical view.

4. The Development View which describes the system from a software point of view,
defining how the components from the logical view are actually constructed in software
artifacts.

Supplemented by a number of
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5. Scenarios (or Use Cases) which provide an integrated view of how the ESD middleware
can be deployed and used. Here, our use case views will describe the primary use-cases
for ESIWACE.

1.3. Document Structure

Before delving into the formal software architecture from a software engineering perspective,
we introduce some key aspects of background information about data layout and data formats
which provide context for both actual architectural decisions and some of the directions in
which the architecture might evolve. Chapter 2 concludes with a description of key storage
components which we consider for targeting in the architecture proper.
We extract the general properties of requirements from the Logical View and present them
in Chapter 3, where we also introduce elements of related work which a priori influence the
architecture itself (e.g.to introduce why we have introduced specific third party dependencies).
Chapter 4 isolates use cases for the ESDM which in turn drive the architecture discussion.
Chapter 5 proceeds with the architecture properties, beginning with an overview, before
addressing the various viewpoints. Chapter 6 addresses the scenarios and use cases, including
the first implementation scenarios that will be necessary to meet ESIWACE requirements.
The document concludes with a summary chapter (Chapter 7) which relates the specific
functional requirements to specific aspects of the architecture.
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2. Background

This chapter introduces the necessary background for the discussions in the remainder of the
document. Section 2.1 covers the structure of the data used within models and some initial
considerations of serializing this data into persistent media. In Section 2.2, we introduce se-
lected file APIs and formats used by the community. Section 2.3 describes how data structures
in memory and storage can be described with an user interface. Finally, Section 2.4 describes
exemplarily selected storage systems.

2.1. Data Generated by Simulations

With the progress of computers and increase of observation data, numerical models were
developed. A numerical weather/climate model is a mathematical representation of the
earth’s climate system, that includes the atmosphere, oceans, landmasses and the cryosphere.
The model consists of a set of grids with variables such as surface pressure, winds, temperature
and humidity. A numerical model can be encoded in a programming language resulting in
an application that simulates the behavior based on the model. Inside an application, a grid
is used to describe the covered surfaces of the model, which often is the globe. Traditionally,
the globe has been divided based on the longitude and latitude into rectangular boxes. Since
this produced unevenly sized boxes and singularities closer to the poles, modern climate
applications use hexagonal and triangular meshes. Particularly triangular meshes have an
additional advantage, that one can refine regions and, thus, can decide on the granularity
that is needed locally – this leads to numeric approaches of the multi-grid methods. Grids
that follow a regular pattern such as rectangular boxes or simple hexagonal grids are called
structured grids. With partially refined grids or when covering complex shapes instead of the
globe, the grids become unstructured, as they form an irregular pattern.
To create an hexagonal or triangular grid from the surface of the earth, the grid can be
constructed starting from an icosahedron and repetitively refining the triangle faces until a
desired resolution is reached. Variables contain data that can either describe a single value
for each cell, the edges of the cells, or the vertices of the cells.
Figure 2.1 shows this localization – the scope of data – for the triangular and hexagonal grids.
Larger grids are shown in Figure 2.3 (and in Figure 2.2). There are figures provided that
illustrate the neighborhood between data points and for different data localizations.

Figure 2.1.: Scope of variables inside the grids
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A triangular grid consists of cells shaped as a triangle (Figure 2.3a). Values can be located
at the centers of the primal grid Figure 2.3b, and if we connect it to each other, we would
see the grid of triangles Figure 2.3c. If values are located at the edges (Figure 2.3d) and they
are connected with its neighbours, then the grid is given as in Figure 2.3e. If the values are
located at the vertices and they are connected with its neighbours, then the grid is given as
in Figure 2.3f.

Hexagonal grid consists of cells shaped as a flat topped hexagon (Figure 2.2a). Two ways
can be used to map data to the grid: vertical or horizontal. Values can be located at the
centers of the primal grid (hexagons Figure 2.2b), and if we connect it to each other, we
would see a grid of triangles Figure 2.2c. If values are located at the edges (Figure 2.2d)
and edges are connected with those of the neighbours, then a grid as shown in Figure 2.2e
emerges. If the values are located at the vertices and vertices are connected with those of the
neighbours, then a different grid emerges (see Figure 2.2f).

2.1.1. Serialization of Grids

The abstractions of grids need to be serialized as data structures for the programming lan-
guages and for persisting them on storage systems. In a programming language, regular grids
can usally be addressed by n-dimensional arrays. Thus, a 2D array can be used to store the
data of a regular 2D longitude/latitude-based grid.
However, storing irregular grids is not so trivial. For example, a 1D array can be used to hold
the data but then the index has to be determined. Staying with our 2D example, to map a
2D coordinate onto the 1D array, a mapping between the 2D coordinate and the 1D index
has to be found. One strategy to provide the mapping are space-filling curves. These curves
have the advantage that the indices to some extent preserve locality for points that are close
together – which can be beneficial, as often operations are conducted on neighboring data
(stencil operations, for example). A Hilbert curve is an example for one possible enumeration
of a multi-dimensional space.

The Hilbert curve is a continuous space-filling curve, that helps to represent a grid as an
n-dimensional-array of values. To visualize its behavior, a 2D grid is shown in Figure 2.5.
In 2D, the basic element of the Hilbert curve is a square with one open side. Every such
square has two end-points, and each of these can be the entry-point or the exit-point. So,
there are four possible variations of an open side. A first order Hilbert curve consists of one
basic element. It is a 2x2 grid. The second order Hilbert curve replaces this element by four
(smaller) basic elements, which are linked together by three joins (4x4 grid). Every next
order repeats the process by replacing each element by four smaller elements and three joins
(8x8 grid). On the Figure 2.5 the 5th level Hilbert curve is represented for the 256x256 data,
that is mapped to a 32x32 grid.
The characteristics of a Hilbert curve can be extended to more than two dimensions. The
first step in the figure can be wrapped up in as many dimensions as is needed and the
points/neighbours will be always saved.

Considerations when serializing to storage systems When serializing a data structure to a
storage system, in essence this can be done similarly as in main memory. The address space
exported by the file API of a traditional file system considers the file to be an array of bytes
starting from 0. This is quite similar to the 1D structure from main memory. However, a
general purpose language (GPL) uses variable names to point to the data in this 1D address
space. A GPL offers means to access even multi-dimensional data easily. The user/program-
mer does not need to know the specific addresses in memory; addresses are calculated within
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(a) Empty hexagonal grid
(b) Hexagonal grid with data at the cell

centers

(c) Hexagonal grid with data at the cell’s
centers, connected neighbours

(d) Hexagonal grid with data on the
edges

(e) Hexagonal grid with data on the
edges, connected neighbours

(f) Hexagonal grid with data at the ver-
tices / connected neighbours

Figure 2.2.: Hexagonal grid
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(a) Empty triangular grid
(b) Triangular grid with data at the cell

centers

(c) Triangular grid with data at the cell
centers, connected neighbours

(d) Triangular grid with data on the
edges

(e) Triangular grid with data on the
edges, connected neighbours

(f) Triangular grid with data on the ver-
tices / connected neighbours

Figure 2.3.: Triangular grid
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Figure 2.4.: Hilbert space-filling curve

Figure 2.5.: Hilbert space-filling curve
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the execution environment or code of the application. The main concern here is consecutive
or stride access through the array; if the programmer wishes the application to loop through
a given dimension of the array, memory locations would be addressed which may not be close
to each other in memory, thus leading to cache misses and hence poorer performance. The
generalisation is the stride, which specifies steps through the different dimensions of the array
(e.g. incrementing both dimensions of a 2D array, thus walking along the “diagonal”). An-
other special case is where the programmer needs to process the whole array, which would be
done most efficiently by stepping through all the memory locations incrementally1, whereas
looping over the dimensions and incrementing them one at a time requires more calculations
and may lead to inefficient memory access with cache misses if not done correctly2.

When storing data from memory directly on persistent media, then the original source code
is necessary to understand this data. Similarly, the interpretation of the bytes in the data
must be same when reading it back, thus, the byte order and size of the datatypes of the
machine reading the data must be identical to those of the machine that wrote it. Floating
point numbers must be encoded in the same byte formats. Since this is not always given, it
threatens the longevity of our precious data, by hindering the portability and reusability of
the data.
Therefore, portable data formats have been developed that allow to serialize and de-serialize
data regardless of the machine’s architecture. To allow correct interpretation of a byte array,
the library implementing the file format must know the data type that the bytes represent.
This information must be stored besides the actual bytes representing the data to allow later
reading and interpretation. From the user perspective, it is useful to also store further meta-
data describing the data. For instance, a name and description of the contained information.
This eases not only debugging but also allows other applications to read and process data in
a portable way. File formats that contain this kind of semantical and structural metadata
are called self-describing file formats.
Developers using a self-describing file format have to use an API to define the metadata.
Such a format may support arbitrary complex data types, which implies that some kind of
data description framework must be part of the API for the file format. See Section 2.3 for
more information about data description frameworks.

2.2. File formats

Generally, parallel scientific applications are designed in such a way, they can solve compli-
cated problems faster when running on a large number of compute nodes. This is achieved by
splitting a global problem into small pieces and distributing them over the compute nodes;
this is called domain decomposition. After each node has computed a local solution, they
can be aggregated to one global solution. This approach can decrease time-to-solution con-
siderably.
I/O makes this picture more complicated, especially when data is stored in one single file
and is accessed by several processes simultaneously. In this case, problems can occur, when
several processes access the same file region, e.g., two processes can overwrite the data of
each other, or inconsistencies can occur when one process reads, while another writes. Porta-
bility is another issue: When transferring data from one platform to another, the contained
information should still be accessible and identical. The purpose of I/O libraries is to hide
the complexity from scientists, allowing them to concentrate on their research.
Some common file formats are listed in the Table 2.1. All of these formats are portable
(machine independent) and self-describing. Self-describing means, that files can be examined

1Assuming the whole array is stored in contiguous memory, as it is in these simple examples.
2Fortran historically stores 2D arrays in column-major order, whereas C and most other languages used in
science store data in row-major order.
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Name Fullname Version Developer

GRIB1 GRIdded Binary 1 World Meteorological Organization
GRIB2 GRIdded Binary 2 World Meteorological Organization
NetCDF3 Network Common Data Form 3.x Unidata (UCAR/NCAR)
NetCDF4 Network Common Data Format 4.x Unidata (UCAR/NCAR
HDF4 Hierarchical Data Format 4.x NCSA/NASA
HDF4-EOS2 HDF4-Earth Obseving System 2
HDF5 Hierarchical Data Format 5.x NCSA/NASA
HDF5-EOS5 HDF5-Earth Obseving System 5

Table 2.1.: Parallel data formats

and read by the appropriate software without the knowledge about the structural details of
the file. The files may include additional information about the data, called “metadata”.
Often, it is textual information about each variable’s contents and units (e.g.,”humidity”
and ”g/kg”) or numerical information describing the coordinates (e.g., time, level, latitude,
longitude) that apply to the variables in the file.
GRIB is a record format, NetCDF/HDF/HDF-EOS formats are file formats. In contrast to
record format, file formats are bound to format specific rules. For example, all variable names
in NetCDF must be unique. In HDF, although, variables with the same name are allowed,
they must have different paths. No such rules exist for GRIB. It is just a collection of records
(datasets), which can be appended to the file in any order.
GRIB-1 record (aka, ’message’) contains information about two horizontal dimensions (e.g.,
latitude and longitude) for one time and one level. GRIB-2 allows each record to contain
multiple grids and levels for each time. However, there are no rules dictating the order of the
collection of GRIB records (e.g, records can be in random chronological order).
Finally, a file format without parallel I/O support, but still worth to mention, is CSV (comma-
separated values). It is special due to its simplicity, broad acceptance and support by a wide
range of applications. The data is stored as plain text in a table. Each line of the file is a
data record. Each record consists of one or more fields, that are separated by commas (hence
the name). The CSV file format is not standardized. There are many implementations that
support additional features, e.g., other separators and column names.

2.2.1. NetCDF4

NetCDF4 with Climate Forecast (CF) metadata and GRIB evolved to the de-facto standard
formats for convenient data access for the scientists in the domain of NWP and climate. For
convenient data access, it provides a set of features, for example, metadata can be used to
assign names to variables, set units of measure, label dimensions, and provide other useful
information. The portability allows data movement between different possibly incompatible
platforms, which simplifies the exchange of data and facilitates communication between sci-
entists. The ability to grow and shrink datasets, add new datasets and access small data
ranges within datasets simplifies the handling of data a lot. The shared file allows to keep
the data in the same file. Unfortunately, the last feature conflicts with performance and effi-
cient usage of the state-of-art HPC. The files, which are accessed simultaneously by several
processes, cause a lot of synchronization overhead which slows down the I/O performance.
Synchronization is necessary to keep the data consistent.
The rapid development of computational power and storage capacity, and slow development
of network bandwidth and I/O performance in the last years resulted in imbalanced HPC
systems. The application use the increased computational power to process more data. More
data, in turn, requires more costly storage space, higher network bandwidth and sufficient I/O
performance on storage nodes. But due to imbalance, the network and I/O performance are
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the main bottlenecks. The idea is, to use a part of the computational power for compression,
adding a little extra latency for the transformation while significantly reducing the amount
of data that needs to be transmitted or stored.
Before considering a compression method for HPC, it is a good idea to take a look at the
realization of parallel I/O in modern scientific applications. Many of them use the NetCDF4
file format, which, in turn, uses HDF5 under the hood.

2.2.2. Typical NetCDF Data Mapping

Listing 2.1 gives an example for scientific metadata stored in a NetCDF file. Firstly, between
Line 1 and 4, a few dimensions of the multidimensional data are defined. Here there are
longitude, latitude with a fixed size and time with a variable size that allows to be extended
(appending from a model). Then different variables are defined on one or multiple of the
dimensions. The longitude variable provides a measure in “degrees east” and is indexed with
the longitude dimension; in that case the variable longitude is a 1D array that contains val-
ues for an index between 0-479. It is allowed to define attributes on variables, this scientific
metadata can define the semantics of the data and provide information about the data prove-
nance. In our example, the unit for longitude is defined in Line 7. Multidimensional variables
such as sund (Line 17) are defined on a 2D array of values for the longitude and latitude
over various timesteps. The numeric values contain a scale factor and offset that has to be
applied when accessing the data; since, here, the data is stored as short values, it should be
converted to floating point data in the application. The FillValue indicates a default value
for missing data points.
Finally, global attributes such as indicated in Line 33 describe that this file is written with
the NetCDF-CF schema and its history describes how the data has been derived / extracted
from original data.
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Listing 2.1: Example NetCDF metadata

1 dimensions :
2 longitude = 480 ;
3 latitude = 241 ;
4 time = UNLIMITED ; // (1096 currently )
5 variables :
6 float longitude ( longitude ) ;
7 longitude :units = " degrees_east " ;
8 longitude : long_name = " longitude " ;
9 float latitude ( latitude ) ;

10 latitude :units = " degrees_north " ;
11 latitude : long_name = " latitude " ;
12 int time(time) ;
13 time:units = "hours since 1900 -01 -01 00:00:0.0 " ;
14 time: long_name = "time" ;
15 time: calendar = " gregorian " ;
16

17 short t2m(time , latitude , longitude ) ;
18 t2m: scale_factor = 0.00203513170666401 ;
19 t2m: add_offset = 257.975148205631 ;
20 t2m: _FillValue = -32767s ;
21 t2m: missing_value = -32767s ;
22 t2m:units = "K" ;
23 t2m: long_name = "2 metre temperature " ;
24 short sund(time , latitude , longitude ) ;
25 sund: scale_factor = 0.659209863732776 ;
26 sund: add_offset = 21599.6703950681 ;
27 sund: _FillValue = -32767s ;
28 sund: missing_value = -32767s ;
29 sund:units = "s" ;
30 sund: long_name = " Sunshine duration " ;
31

32 // global attributes :
33 : Conventions = "CF -1.0" ;
34 : history = "2015 -06 -03 08:02:17 GMT by grib_to_netcdf -1.13.1:

↪→ grib_to_netcdf /data/ data04 / scratch /netcdf -atls14 -
↪→ a562cefde8a29a7288fa0b8b7f9413f7 - lFD4z9 . target -o /data/ data04 /
↪→ scratch /netcdf -atls14 - a562cefde8a29a7288fa0b8b7f9413f7 - CyGl1B .nc -
↪→ utime" ;

35 }

2.3. Data Description Frameworks

Many application developers rely on data description frameworks or libraries to manage
datatypes3. Different libraries and middlewares provide mechanisms to describe data using
basic types and to construct new ones using dedicated APIs. Datatypes are provided as a
transparent conversion mechanism between internal representation (as data is represented
in memory) and external representation (how data is transmitted over the network or saved
to permanent storage). This section gives an overview of datatypes provided by different
software packages. Starting from existing middlewares’ datatype definitions, we will propose
a list of basic datatypes to be supported by the ESD middleware.

2.3.1. MPI

The Message Passing Interface supports derived datatypes for efficient data transfer as well as
compact description of file layouts (through file views). MPI defines a set of basic datatypes
(or type class) from which more complex ones can be derived using appropriate data con-
structor APIs. Basic datatypes in MPI resemble C atomic types as shown in Table 2.2.

3A datatype is a collection of properties, all of which can be stored on storage and which, when taken as a
whole, provide complete information for data conversion to or from the datatype.
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Datatype Description

MPI CHAR
this is the traditional ASCII character
that is numbered by integers between

0 and 127

MPI WCHAR
this is a wide character, e.g., a 16-bit
character such as a Chinese ideogram

MPI SHORT
this is a 16-bit integer between -32,768

and 32,767

MPI INT
this is a 32-bit integer between

-2,147,483,648 and 2,147,483,647

MPI LONG this is the same as MPI INT on IA32

MPI LONG LONG INT

this is a 64-bit long signed integer, i.e.,
an integer number between

-9,223,372,036,854,775,808 and
9,223,372,036,854,775,807

MPI LONG LONG same as MPI LONG LONG INT

MPI SIGNED CHAR same as MPI CHAR

MPI UNSIGNED CHAR
this is the extended character

numbered by integers between 0 and
255

MPI UNSIGNED SHORT
this is a 16-bit positive integer

between 0 and 65,535

MPI UNSIGNED LONG
this is the same as MPI UNSIGNED

on IA32

MPI UNSIGNED
this is a 32-bit unsigned integer, i.e., a
number between 0 and 4,294,967,295

MPI FLOAT
this is a single precision, 32-bit long

floating point number

MPI DOUBLE
this is a double precision, 64-bit long

floating point number

MPI LONG DOUBLE
this is a quadruple precision, 128-bit

long floating point number

MPI C COMPLEX this is a complex float

MPI C FLOAT COMPLEX same as MPI C COMPLEX

MPI C DOUBLE COMPLEX this is a complex double

MPI C LONG DOUBLE COMPLEX this is a long double complex

MPI C BOOL this is a Bool

MPI INT8 T this is a 8-bit integer

MPI INT16 T this is a 16-bit integer

MPI INT32 T this is a 32-bit integer

MPI INT64 T this is a 64-bit integer

MPI UINT8 T this is a 8-bit unsigned integer

MPI UINT16 T this is a 16-bit unsigned integer

MPI UINT32 T this is a 32-bit unsigned integer

MPI UINT64 T this is a 64-bit unsigned integer

MPI BYTE this is an 8-bit positive integer

MPI PACKED -

Table 2.2.: MPI Datatypes

Datatypes from Table 2.2 can be used in combination with the constructor APIs shown in
Table 2.3 to build more complex derived datatypes.
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Datatype Constructor Description

MPI Type create hindexed
create an indexed datatype with

displacement in bytes

MPI Type create hindexed block
create an hindexed datatype with

constant-sized blocks

MPI Type create indexed block
create an indexed datatype with

constant-sized blocks

MPI Type create keyval
create an attribute keyval for MPI

datatypes

MPI Type create hvector
create a datatype with constant stride

given in bytes

MPI Type create struct
create a MPI datatype from a general
set of datatypes, displacements and

block sizes

MPI Type create darray
create a datatype representing a

distributed array

MPI Type create resized
create a datatype with a new lower
bound and extent from an existing

datatype

MPI Type create subarray
create a datatype for a subarray of a

regular, multidimensional array

MPI Type contiguous create a contiguous datatype

Table 2.3.: MPI Derived Datatypes Constructors

Before they can be actually used, MPI derived datatypes (created using the constructors in
Table 2.3) have to be committed to memory using the MPI Type commit interface. Similarly,
when no longer needed, derived datatypes can be freed using the MPI Type free interface.
Unlike data format libraries, MPI does not provide any permanent data representation (MPI-
IO can only read/write binary data), therefore derived datatypes are not used to store any
specific data format on stable storage and are instead used only for data transfers or file
layout descriptions.
An example code for defining a derived data structure for a structure is shown in Listing 2.2.
The structure is defined in Lines 5-9. The function in Lines 12-22 registers this datatype in
MPI. This requires to define the beginning and end of each array, its type and size. Once a
datatype is defined, it can be used as memory type in subsequent operations. In this example,
one process sends this datatype to another process (Line 38 and Line 45).
Since MPI datatypes were initially designed for computation and, thus, to define memory
regions, they do not offer a way to name the data structures.
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Listing 2.2: Example construction of an MPI datatype for a structure

1 # include <stdio.h>
2 # include <string .h>
3 # include <mpi.h>
4

5 typedef struct student_t_s {
6 int id [2];
7 float grade [5];
8 char name [20];
9 } student_t ;

10

11 /* create a type for the struct student_t */
12 void create_student_datatype ( MPI_Datatype * mpi_student_type ){
13 int blocklengths [3] = {2, 5, 20};
14 MPI_Datatype types [3] = {MPI_INT , MPI_FLOAT , MPI_CHAR };
15 MPI_Aint offsets [3];
16

17 offsets [0] = offsetof (student_t , id) ;
18 offsets [1] = offsetof (student_t , grade);
19 offsets [2] = offsetof (student_t , name);
20 MPI_Type_create_struct (3, blocklengths , offsets , types ,

↪→ mpi_student_type );
21 MPI_Type_commit ( mpi_student_type );
22 }
23

24 int main(int argc , char ** argv) {
25 const int tag = 4711;
26 int size , rank;
27

28 MPI_Init (&argc , &argv);
29 MPI_Comm_size ( MPI_COMM_WORLD , &size);
30 MPI_Comm_rank ( MPI_COMM_WORLD , &rank);
31

32 MPI_Datatype mpi_student_type ;
33 create_student_datatype (& mpi_student_type );
34

35 if (rank == 0) {
36 student_t send = {{1, 2}, {1.0 , 2.0, 1.7, 2.0, 1.7} , "Nina

↪→ Musterfrau "};
37 const int target_rank = 1;
38 MPI_Send (&send , 1, mpi_student_type , target_rank , tag ,

↪→ MPI_COMM_WORLD );
39 }
40 if (rank == 1) {
41 MPI_Status status ;
42 const int src =0;
43 student_t recv;
44 memset (& recv , 0, sizeof ( student_t ));
45 MPI_Recv (&recv , 1, mpi_student_type , src , tag , MPI_COMM_WORLD ,

↪→ & status );
46 printf ("Rank %d: Received : id = %d grade = %f student = %s\n",

↪→ rank , recv.id[0], recv.grade [0], recv.name);
47 }
48

49 MPI_Type_free (& mpi_student_type );
50 MPI_Finalize ();
51

52 return 0;
53 }

2.3.2. HDF5

HDF5 is a data model, library, and file format for storing and managing data. It supports
an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for high
volume and complex data. HDF5 is portable and is extensible, allowing applications to
evolve in their use of HDF5. The HDF5 Technology suite includes tools and applications for
managing, manipulating, viewing, and analyzing data in the HDF5 format. Like MPI, HDF5
also supports its own basic (native) datatypes reported in Table 2.4.

ESD Middleware Architecture 22/132



CHAPTER 2. BACKGROUND

Datatype Corresponding C Type

H5 NATIVE CHAR char
H5 NATIVE SCHAR signed char
H5 NATIVE UCHAR unsigned char
H5 NATIVE SHORT short
H5 NATIVE USHORT unsigned short

H5 NATIVE INT int
H5 NATIVE UINT unsigned int
H5 NATIVE LONG long
H5 NATIVE ULONG unsigned long
H5 NATIVE LLONG long long
H5 NATIVE ULLONG unsigned long long
H5 NATIVE FLOAT float
H5 NATIVE DOUBLE double
H5 NATIVE LDOUBLE long double

H5 NATIVE B8
8-bit unsigned integer or 8-bit buffer in

memory

H5 NATIVE B16
16-bit unsigned integer or 16-bit buffer

in memory

H5 NATIVE B32
32-bit unsigned integer or 32-bit buffer

in memory

H5 NATIVE B64
64-bit unsigned integer or 64-bit buffer

in memory

H5 NATIVE HADDR haddr t
H5 NATIVE HSIZE hsize t
H5 NATIVE HSSIZE hssize t
H5 NATIVE HERR herr t
H5 NATIVE HBOOL hbool t

Table 2.4.: HDF5 Native Datatypes

Besides the native datatypes, the library also provides so called standard datatypes, architec-
ture specific datatypes (e.g., for i386), IEEE floating point datatypes, and others. Datatypes
can be built or modified starting from the native set of datatypes using the constructors as
listed in Table 2.5.
HDF5 constructs allow the user a fine-grained definition of arbitrary datatypes. Indeed,
HDF5 allows the user to build a user-defined datatype starting from a native datatype (by
copying the native type) and then change datatype characteristics like sign, precision, etc,
using the supported datatype constructor API. However, since these user-defined data types
have often no direct representation on available hardware, this can lead to performance issues.
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Datatype Constructor Description

H5Tcreate

Creates a new datatype of the specified
class with the specified number of

bytes. This function is used only with
the following datatype classes:

H5T COMPOUND, H5T OPAQUE,
H5T ENUM, H5T STRING. Other

datatypes, including integer and
floating-point datatypes, are typically
created by using H5Tcopy to copy and

modify a predefined datatype

H5Tvlen create

Creates a new one-dimensional array
datatype of variable-length (VL) with

the base datatype. The base type
specified for the VL datatype can be

any HDF5 datatype, including another
VL datatype, a compound datatype,

or an atomic datatype

H5Tarray create
Creates a new multidimensional array

datatype object

H5Tenum create

Creates a new enumeration datatype
based on the specified base datatype,
dtype id, which must be an integer

datatype

H5Tcopy

Copies an existing datatype. The
returned type is always transient and
unlocked. A native datatype can be

copied and modified using other APIs
(e.g. changing the precision)

H5Tset precision
Sets the precision of an atomic

datatype. The precision is the number
of significant bits

H5Tset sign
Sets the sign property for an integer
type. The sign can be unsigned or

two’s complement

H5Tset size
Sets the total size in bytes for a

datatype

H5Tset order
Sets the byte order of a datatype (big

endian or little endian)

H5Tset offset
Sets the bit offset of the first

significant bit

H5Tset fields

Sets the locations and sizes of the
various floating-point bit fields. The
field positions are bit positions in the

significant region of the datatype. Bits
are numbered with the least significant

bit number zero

Table 2.5.: HDF5 Datatypes Constructors
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Datatype Description

NC BYTE 8-bit signed integer

NC UBYTE 8-bit unsigned integer

NC CHAR 8-bit character byte

NC SHORT 16-bit signed integer

NC USHORT 16-bit unsigned integer

NC INT 32-bit signed integer

NC UINT 32-bit unsigned integer

NC INT64 64-bit signed integer

NC UINT64 64-bit unsigned integer

NC FLOAT 32-bit floating point

NC DOUBLE 64-bit floating point

NC STRING variable length character string

Table 2.6.: netCDF Atomic External Datatypes

2.3.3. NetCDF

NetCDF as important alternative is popular within the climate community. NetCDF provides
a set of software libraries and self-describing, machine-independent, data formats that support
the creation, access, and sharing of array-oriented scientific data. In the version 4 of the
library (NetCDF4), the used binary file representation is HDF5. Like MPI and HDF5,
NetCDF also defines its own set of atomic datatypes as shown in Table 2.6.
Similarly to HDF5 and MPI, in addition to the atomic types the user can define his own
types. NetCDF supports four different user defined types:

1. Compound: are a collection of types (either user defined or atomic)

2. Variable Length Arrays: are used to store non-uniform arrays

3. Opaque: only contain the size of each element and no datatype information

4. Enum: like an enumeration in C

Once types are constructed, variables of the new type can be instantiated with nc def var.
Data can be written to the new variable using nc put var1, nc put var, nc put vara,
or nc put vars. Data can be read from the new variable with nc get var1, nc get var,
nc get vara, or nc get vars. Finally, new attributes can be added to the variable using
nc put att and existing attributes can be accessed from the variable using nc get att.

Table 2.7 shows the constructors provided to build user defined datatypes.

Type Constructor Description

Compound

nc def compound create a compound datatype

nc insert compound
insert a name field into a

compound datatype

nc insert array compound
insert an array field into a

compound datatype

nc inq {compound,name,...} learn information about a
compound datatype

Variable
Length
Array

nc def vlen create a variable length array

nc inq vlen
learn about a variable length

array

nc free vlen
release memory from a variable

length array
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Opaque
nc def opaque create an opaque datatype

nc inq opaque learn about an opaque datatype

Enum

nc def enum create an enum datatype

nc insert enum
insert a named member into an

enum datatype

nc inq {enum,...} learn information about an
enum datatype

Table 2.7.: NetCDF Datatypes Constructors
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2.3.4. GRIB

GRIB is a library and data format widely used in weather applications. It differs from
previously described libraries in the sense that it does not define datatypes that can be
used to store a wide range of different data. Instead, GRIB very clearly defines the sections
of every – so called – message which is the unit sent across a network link or written to
permanent storage. Every message in GRIB has different sections, each of which contains
some information. GRIB defines the units that can be represented in every message and
thus does not specifically need datatypes to represent them. But a library supporting these
formats needs to know the mapping from a message type to the contained data fields and
their data types. In that sense, GRIB is not a self-describing file format but requires code to
define the standardized content. GRIB messages contain 32-bit integers that can be scaled
using a predefined data packing schema. The scaling factor is stored along with the data
inside the message.

2.4. Storage Systems

This section introduces interesting storage systems, in particular software concepts. With
ESD, we focus on HPC, however, other fields are very active in the creation of storage
systems with embedded processing engines. Since we use some low-level concepts which are
exploited by existing software products, we introduce these solutions briefly. Also, some of
the listed systems are directly used by ESD.

2.4.1. WOS

DDN (Data Direct Network) WOS (Web object scaler) represents an object storage solution
able to manage files as ”objects”.
It offers a simple and effective way to manage data stored in the cloud by means of an ease
administration interface and IP based direct connection to the nodes. WOS architecture is
natively geographically agnostic and this represents one of the main features of the product:
nodes can be deployed anywhere and the access to data which they host is guaranteed by
Internet Protocol (IP) connectivity. In this sense, all the nodes which form the cloud work
together to form an aggregated pool of storage space.
Basically, WOS relies on the following features and concepts:

• nodes, zones and cloud: nodes represent the addressable elements of the archi-
tecture; they participate at the cloud environment providing their storage space and
computational power. The nodes are connected to the WOS cloud through a preferably
high-speed internet connection. Multiple nodes form a zone which collects nodes with
a certain policy. The WOS system is able to automatically balance the load among
the nodes within a zone. The pool of the zones forms the entire WOS cloud; the
communication in the cloud is guaranteed by the membership of a common network.

• policy: the administrator defines different rules which determine the object distribu-
tion. It is important to highlight that files + metadata + policy form an Object.

• object: an object is formed by multiple elements managed by WOS as a single entity.
For instance, an object could be a file stored in the WOS cloud or a group of them.

• ObjectID (OID): An OID uniquely identifies an object (and its replicas, if any). The
OID has to be provided to the WOS system for allowing the addressing and retrieving
of the related object.
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In addition to these, WOS supports the definition of metadata by the users in the form of
key-value pairs and multiple replicas for each object (managed by the policy rules).
WOS cloud is a good solution to take into account to manage data in environments which
present particular features or challenges that could affect the traditional architectures based
on common file-systems and storage solutions. For example, it can be applied successfully
when datasets are too large for a single file system and, so, they need to be stored on multiple
sites or, on the contrary, files are very small but a lots. Other examples are systems that
present high rates of file read, write and/or file deletion or if users want a small system to
start with the possibility to easily scale up. The only requirements of a WOS installation are
related to the connection between the nodes: nodes must be interconnected through a network
(LAN or WAN or a combination of them) and must be able to communicate using the TCP/IP
protocol. The network between the nodes should be stable and reliable (anyway WOS system
are able to recover the normal operational activity after a network outages), fast (multiple
Gigabit ports are preferred or 10 Gigabit Ethernet connections) and low-latency (which is
an important aspect especially for TCP/IP connections so using low-latencies appliances will
guarantee the best results).
The WOS Core relies on three main services and an instance of each service is installed on
each node that forms the WOS cluster. These services are:

• TheManagement Tuning Service (MTS) which has the task to control the admin-
istration and configuration functions. The master node hosts the primary MTS while
the other nodes host an instance of this service.

• The wosnode which is hosted on each node of the cluster. It manages and controls
all the I/O operations to the connected devices; in order to improve performance and
reliability, the wosnode operates only on the local node also in the case the MTS goes
down.

• The wosrest represents the service which provides the REST (Representational State
Transfer) interface. An application that access the WOS cluster over the network
interact with the node by means of this service and the REST interface.

The WOS API
WOS architecture provides several APIs for connecting an application to the cluster, manages
the objects and the related metadata. Specifically WOS provides API for C++, JAVA and
Python languages. In addition it provides an HTTP Restful interface. It is not allowed to
modified objects so each object can be written only once, read many times and eventually
deleted.
As mentioned above, each object has a unique Object-ID (OID) that is returned to the user
when the object is created. OID is unique for the entire life of the cluster and no OID
replication is allowed also if an object is deleted. OID should be used by the clients to access
the object; so, common applications have to maintain a catalog for collecting the OID of
the stored objects. In this context we will analyze the C++ APIs provided by the WOS
installation and the extensions developed in order to wrap the C++ APIs on C functions.
The C++ APIs provide interface for the following operations:

• Connect to the WOS cluster;

• Create WOS objects;

• PUT, GET, DELETE, EXISTS (on objects)

• Reserve, PutOID (on Object-IDs)
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Moreover, it offers functionality for supporting streaming features, which allows to read and
write large objects without storing the entire set of data in the client memory, and to retrieve
metadata independently of the related data.
More in detail in the following list of the calls for each operation mentioned before.

Operation WOS Call Description

Connect
WosClusterPtr wos =

WosCluster::Connect(host);

host represents the IP
address of one host of the

WOS cluster. A process can
open only one connection to

the cluster and should keep it
open until the termination.

Create object
WosObjPtr wobj =
WosObj::Create();

wobj is a C++ WosObject.
After creating a WosObject,
data and metadata can be

associated

Set data
Set metadata

wobj->SetData(data, len);
wobj->SetMeta(”<key>”,

”value”);

wobj represents the
WosObject and data the void
pointer containing the data
to store. For metadata, the

couple <key>, <value> must
be passed.

Put blocking
Put non-blocking

wos->Put(status, oid, policy,
wobj);

wos->Put(wobj, policy,
callback, context);

wobj is the just created Wos
Object to put. The

non-blocking form needs a
callback function and a

context object to perform
and synchronize the starting
and the termination of the

operation.

Get blocking
Get non-blocking

wos->Get(status, oid, wobj);
wos->Get(oid, callback,

context);

as for the put function, the
non-blocking case uses a

context and a callback
function. After retrieving a

Wos object data and
metadata included can be

read.

Get data
Get metadata

wobj->GetData(data,
length);

wobj->GetMeta(”<key>”,
value);

wobj represents the
WosObject and data the void

pointer for storing the
retrieved data. To retrieve

metadata the corresponding
key must be passed. It is

worth noting that WOS does
not allow to modify/update

objects: a modified copy
could be stored as a separate

object
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Delete blocking
Delete

non-blocking

wos->Delete(status, oid);
wos- >Delete(oid, callback,

context);

as for the put and get
functions, the delete

operation can be performed
in a blocking or non-blocking

form

Exists blocking
Exists

non-blocking

wos->Exists(status, oid);
wos->Exists(oid, callback,

context);

Check the existence of a Wos
Object using its OID. To

actually retrieve the object
and data the related get
functions could be used

Reserve blocking
Reserve

non-blocking

wos->Reserve(status, oid,
policy);

wos->Reserve(policy,
callback, context);

Reserve an OID to be used in
the next PutOID call.

PutOID blocking
PutOID

non-blocking

wos->PutOID(status, oid,
wobj);

wos->PutOID(wobj, oid,
callback, context);

Put a Wos Object using the
reserved oid. It is worth
noting that the couple of

functions Reserve and
PutOID perform the same
operations of the Put call.
They should be used if the
application need to execute
the two stages at different

time.

Table 2.8.: WOS Operations

2.4.2. Mero

Mero is an Exascale ready Object Store system developed by Seagate and built from the
ground up to remove the performance limitations typically found in other designs. Unlike
similar storage systems (e.g. Ceph and DAOS) Mero does not rely on any other file system
or raid software to work. Instead, Mero can directly access raw block storage devices and
provide consistency, durability and availability of data through dedicated core components.
Mero provides two types of objects: (1) A common object is an array of fixed-size of blocks.
Data can be read from and written to these objects. (2) An index for key-value store. Key-
value records can be put to and get from an index. So Mero can be used to store raw data,
as well as metadata.
Mero provides C language interfaces, i.e. Clovis, to applications. ESD middleware will use
Clovis and link with Clovis to manage and access Mero storage cluster.

2.4.3. Ophidia

The Ophidia Big Data Analytics Framework has been designed to provide an integrated
solution to address scientific use cases and big data analytics issues for eScience. It addresses
scalability, efficiency, interoperability, and modularity requirements providing scientists an
effective framework to manage large amounts of data in a Peta/Exascale perspective.
In the following subsections, the Ophidia multidimensional data model is presented highlight-
ing the main differences regarding the related storage models.

Multidimensional data model and star schema
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Figure 2.6.: Moving from the DFM to the Ophidia hierarchical storage model

A multidimensional data model is typically organized around a central theme and shows the
data by means of the form of a datacube. Datacube consists of several measures which rep-
resent numerical values that can be analyzed over the available dimensions.

The multidimensional data model exists in the form of star, snowflake or galaxy schema. The
Ophidia storage model is an evolution of the star schema: in this schema, the data warehouse
implementation consists of a large central table (the fact table, FACT) that contains all the
data and a set of smaller tables (dimension tables), one for each dimension. The dimensions
can also implement hierarchies, which provide a way for performing analysis and mining over
the same dimension.
Let us consider the Dimensional Fact Model, a conceptual model for data warehouse and
the classic Relational-OLAP (ROLAP) based implementation of the associated star schema.
There is one fact table (FACT), four dimensions (dim1, dim2, dim3, and dim4), with the
last dimension modeled through a 4-level concept hierarchy (lev1, lev2, lev3, lev4) and a
single measure (measure). Let us consider a NetCDF output of a global model simulation
where dim1, dim2, and dim3 correspond to latitude, longitude, and depth, respectively and
dim4 is the time dimension, with the concept hierarchy year, quarter, month, day; measure
represents, for instance, the air pressure.

Ophidia internal storage model

The Ophidia internal storage model is a two-step-based evolution of the star schema. Specif-
ically, the first step includes the support for array-based data types while the second step
includes a key mapping related to a set of foreign keys (fks). In this way, a multidimensional
array can be managed using single tuple (e.g., an entire time series) and the n-tuple (fk dim1,
fk dim2, ..., fk dimn) to be replaced by a single key (a numerical ID). It is worth noting that
thanks to the second step the Ophidia storage model is independent of the number of di-
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mensions, unlike the classic ROLAP-based implementation. Using this approach the system
moves to a relational key-array schema supporting n-dimensional data management with a
reduced disk space occupancy. The key attribute manages (through a single ID) a set of
m dimensions (m¡n), mapped onto the ID through a numerical function: ID = f(fk dim1,
fk dim2, ..., fk dimm); the corresponding dimensions are called explicit dimensions. The
array attribute manages the other n-m dimensions, called implicit dimensions.
In our example, latitude, longitude and depth are explicit dimensions, while time is the
implicit one (in this case 1-D array) so the mapping on the Ophidia key-array data storage
model consists of having a single table with two attributes:

• an ID attribute: ID = f(fk latitudeID, fk longitudeID, fk depthID) as a numerical data
type;

• an array-based attribute, managing the implicit dimension time, as a binary data type.

In terms of implementation, several RDBMS allow data to be stored in binary form but they
do not provide a way to manage the array as a native data type. The reason is that the avail-
able binary data type does not look at the binary array as a vector, but rather as a single
binary block: therefore, we have designed and implemented several array-based primitives to
manage arrays stored through the Ophidia storage model.

Hierarchical data management

In order to manage large volumes of data, in the following we discuss the horizontal par-
titioning technique that we use jointly with a hierarchical storage structure. Following the
previous figure, it consists of splitting the central FACT table by ID into multiple smaller
tables (each chunk is called fragment). Many queries can execute more efficiently when us-
ing horizontal partitioning since it allows parallel query implementations and only a small
fraction of the fragments may be involved in query execution (e.g., subsetting task). The
fragments produced by the horizontal partitioning are mapped onto a hierarchical structure
composed of four different levels:

• Level 0: multiple I/O nodes (multi-host);

• Level 1: multiple instances of IO Server on the same I/O node (multi-IO Server);

• Level 2: multiple instances of databases on the same IO Server (multi-DB);

• Level 3: multiple fragments on the same database (multi-table).

The hierarchical data storage organization allows data analysis and mining on a large set of
distributed fragments as a whole exploiting multiple processes and parallel approaches.

2.5. Big Data Concepts

In the context of Big Data, there are many (typically Java based) technologies that address
storing and processing of large quantities of data.

Hadoop File System
The Hadoop File System (HDFS) is a distributed file system that is designed to work with
commodity hardware. It provides fault tolerance via data replication and self healing. One
limitation of its design is its consistency semantics which allows concurrent reads of multiple
processes but only a single writer (WORM Model, write-once-read-many). The data stored
on HDFS are replicated in the cluster to ensure fault tolerance. HDFS ensures data integrity
and can detect loss of connectivity when a node is down. The main concepts:
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• Datanode: nodes that own data;

• Namenode: node that manages the file access operations.

The supported interfaces and languages are: HDFS Java API, WebHDFS REST API and
libhdfs C API, as well as a Web interface and CLI shells. Security is based on file authen-
tication (user identity). However, HDFS accepts network protocols like Kerberos (for users)
and encryption (for data). HDFS was designed in Java for Hadoop Framework, therefore any
machine that supports Java is able to run it. It can be considered as the ”source” of many
processing systems (especially in the Apache eco-system) like Hadoop and Spark. All data
stored into HDFS become “sequencefile” files.
However, its sub-optimal performance on high-performance storage and assumption to work
on cheap hardware makes it no optimal choice for HPC environments. Therefore, many ven-
dors support HDFS adapters on top of high-performance parallel file systems such as GPFS
and Lustre. One limitation of its design is its consistency semantics which allows concurrent
reads of multiple processes but only a single writer.

HBase
Apache HBase is a distributed, scalable, big data store. HBase is an open-source, distributed,
versioned, non-relational database modeled after Google’s “Bigtable: A Distributed Storage
System for Structured Data” by Chang et al. [R19]. Similarly to Bigtable, which leverages
the distributed data storage provided by GFS, Apache HBase provides Bigtable-like capa-
bilities on top of Hadoop and HDFS (https://hbase.apache.org/). It can be used to perform
random, realtime read/write access to large volumes of data. HBase’s goal is the hosting of
very large tables, on top of clusters of commodity hardware. As in the case of HDFS this is
not the optimal choice for HPC infrastructures.

Hive
Apache Hive is a data warehouse software facilitating reading, writing, and managing of large
datasets residing in distributed storage using SQL (https://hive.apache.org/). It is built on
top of Apache Hadoop and provides:

• tools to enable easy access to data via SQL, allowing data warehousing tasks such as
ETL, reporting, and data analysis;

• access to files stored directly in Apache HDFS or in other data storage systems like
Apache HBase. The advantage is that no extract, transform, load (ETL) process is
necessary; simply move the data into the file system, create a scheme on the existing
files.

• support for query execution via various frameworks (i.e. Apache Tez, Apache Spark or
MapReduce).

• a convenient SQL interface (including many of the later 2003 and 2011 features for
analytics) to this data. This allows users to explore data using SQL at a fine grain
scale by accessing data stored on the file system.

Drill
Drill 4 also provides an SQL interface to existing data.
Similar to Hive, existing data can be adjusted, but in the case of Drill, data may be stored
on various storage backends such as simple JSON file, on Amazon S3, or MongoDB.

4https://drill.apache.org
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Alluxio
Alluxio 5 offers a scalable in-memory file system. An interesting feature is that one can
attach (mount) data from multiple (even remote) endpoints such as S3 into the hierarchical
in-memory namespace. It provides control to the in-memory data, for example, to trigger
a flush of dirty data to the storage backend and an interface for pinning data in memory
(similar to burst buffer functionality). Data stored on Alluxio can be used on various big
data tools.

2.5.1. Ophidia Big Data Analytics Framework

The Ophidia Big Data Analytics Framework falls in the big data analytics area applied to
eScience contexts. It addresses scientific use cases on large data volumes aiming at support-
ing the access, analysis and mining of n-dimensional array based data. In this perspective,
the Ophidia platform extends, in terms of both primitives and data types, current relational
database systems enabling big data analytics tasks exploiting well-known scientific numerical
libraries, a distributed and hierarchical storage model and a parallel software framework based
on the Message Passing Interface to run from single operations to more complex dataflows.
Further, Ophidia provides a server interface that makes the data analysis task a server-side
activity in the scientific chain. Exploiting such an approach, most scientists would not need
to download large volumes of data for their analysis as it happens today. On the contrary
they would download the results of their computations (typically in the megabytes or even
kilobytes order) after running multiple remote data analysis operations.

In the following the main features of the analytics framework of Ophidia will be depicted,
the related architecture and the primitives and operators supported.

The Ophidia architecture

The Ophidia architecture consists of (i) the server front-end, (ii) the OphidiaDB, (iii) the
compute nodes, (iv) the I/O nodes and (v) the storage system.

• The server front-end is responsible for accepting and dispatching requests incoming
from the clients. It is a pre-threaded server implementing standard interfaces (WS-I,
OGC-WPS, GSI-VOMS). It relies on X.509 digital certificates for authentication and
Access Control List (ACL) for authorization;

• The OphidiaDB is the system (relational) database. By default the server front-end uses
a MySQL database to store information about the system configuration and its status,
available data sources, registered users, available I/O servers, and the data distribution
and partitioning;

• The compute nodes are computational machines used by the Ophidia software to run
the parallel data analysis operators;

• The I/O nodes are the machines devoted to the parallel I/O interface to the storage.
Each I/O node hosts one or more I/O servers responsible for I/O with the underlying
storage system.

• The I/O servers are MySQL DBMSs or native in-memory services supporting, at both
the data type and primitives levels, the management of n-dimensional array structures.
This support has been adding a new set of functions (exploiting the User Defined
Function approach, UDF) to manipulate arrays.

5https://www.alluxio.com/docs/community/1.3/en/
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• The storage system is the hardware resource managing the data store, that is, the
physical resources hosting the data according to the hierarchical storage structure.

The Ophidia primitives and operators

As mentioned before, the Ophidia framework addresses the analysis of n-dimensional arrays.
This is achieved through a set of primitives included into the system as plugins (dynamic
libraries). So far, about 100 primitives have been implemented. Multiple core functions of
well-known numerical libraries (e.g. GSL, PETSc) have been included into new Ophidia prim-
itives. Among others, the available array-based functions allow to perform data sub-setting,
data aggregation (i.e. max, min, avg), array concatenation, algebraic expressions, and pred-
icate evaluation. It is important to note that multiple plugins can be nested to implement a
single more complex array-based task. Bit-oriented plugins have also been implemented to
manage binary data cubes. Compression routines, based on zlib, xz, lzo libraries, are also
available as array-based primitives.

Concerning the operators, The Ophidia analytics platform provides several MPI-based paral-
lel functionalities to manipulate (as a whole) the entire set of fragments associated to a dat-
acube. Some relevant examples include: datacube sub-setting (slicing and dicing), datacube
aggregation, array-based primitives at the datacube level, datacube duplication, datacube
pivoting, and NetCDF file import and export. Along with data operators, the framework
provides a comprehensive set of metadata operators. Metadata represents a valuable source
of information for data discovery and data description. From this point of view some exam-
ples include: provenance management, fragmentation and cubesize information, variable and
dimensions specific attributes.

Workflows management

The framework stack includes an internal workflow management system, which coordinates
and orchestrates the execution of multiple scientific data analytics and visualization tasks
(e.g. operational processing/analysis chains). It is able to manage the submission of complex
scientific workflows by means of parsing and analyzing input JSON files written in compliance
with a predefined JSON Schema, which includes the description of each task, the definition of
the dependencies among different tasks, and several metadata. In addition advanced features
are available as definition of loops, variable definition and conditional statements. Workflow
execution monitoring is allowed by explicitly querying the Ophidia server or in real-time
through a graphical user interface.

2.5.2. MongoDB

The MongoDB6 is an open-source document database. Its architecture is high-performant
and horizontally scalable for cluster systems. MongoDB offers a rich set of interfaces, e.g.,
RESTful access, C, Python, Java.
The data model of MongoDB provides three levels:

• Database: follows our typical notion; permissions are defined on the database level.

• Document: This is a BSON object (binary JSON) – consisting of subdocuments with
data. An example as JSON is shown in Listing 2.3. Each document has the primary
key field: id. The field must be either manually set or it will be automatically filled.

6https://docs.mongodb.com/
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• Collection: this is like a table of documents in a database. Documents can have indi-
vidual schemas. It supports indices on fields (and compound fields).

To access data, one has to know the name of a database (potentially secured with a username
and password), collection name. All documents within the collection can be searched or
manipulated with one operation.
In the example of Listing 2.3, it would also be possible to create one document for each person
and use the id field with a self-defined unique ID such as a tax number.

Listing 2.3: Example MongoDB JSON document

1 "_id" : ObjectId ("43459 bc2341bc14b1b41b124 "),
2 " people " : [ # subdocuments :
3 { "name" : "Max", "id" : 4711 , "birth" : ISODate ("2000 -10 -01")},
4 { "name" : "Lena", "id" : 4712 , "birth", ... }
5 ]

MongoDB’s architecture uses sharding of document keys to partition data across different
servers. Servers can be grouped into replica sets to provide high availability and fault toler-
ance.

Query documents A query document is a BSON document that is used to search all doc-
uments of a collection for data that matches the defined query. The example in Listing 2.4
specifies documents that contain the subdocument people with an id field that is bigger than
4711. Complex queries can be defined. In combination with indices on fields, MongoDB can
search large quantities of documents quickly.

Listing 2.4: Example MongoDB Query document

1 { " people .id" : { $gt : 4711 } }
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3. Requirements

The goal of this section is to provide high-level requirements: what the system needs to do
and how it relates to dependencies. The chapter distingueshes between functional and non-
functional requirements. Functional requirements, that is the required features to fulfill the
application of the system are enumerated in Section 3.1. Non-functional requirements that re-
late to the runtime qualities (e.g., performance, fault-tolerance or security) of the architecture
are collected in Section 3.2.

3.1. Functional Requirements

The developed system is a storage system, thus provides basic means to access and ma-
nipulate data and, thus, provides an API suitable for use in current and next generation
high-performance simulation environments:

1. CRUD-operations – Create, Retrieve, Update (append), Delete data in scientific rele-
vant granularities.

• Partial access – It must be possible to either retrieve (access) the complete results
from experiments or to identify sections of interest and access those.

2. Discover, browse and list data. It must be possible to identify the file or object which
contains interesting data, and eventually obtaining an identifier for the object and an
endpoint through which it can be accessed.

3. Handling of scientific/structural metadata as first class citizen, that means the storage
system understands the metadata and the API is designed to exploit this knowledge,
e.g., data can be searched by consulting metadata catalogues.

4. Semantical namespace, meaning that objects can be searched and accessed based on
the stuctural metadata and not by a single hierarchical namespace.

5. Supporting heterogeneous storage – the system shall exploit a heterogenity of hardware
technology, that means using the invididual storage technologies for the best purpose,
i.e., the characteristics of the storage define their use within ESD. At best, the system
makes these decisions without user intervention but it may require users to provide
certain ”hints” or intents how data is and will be used.

This includes cases such as:

a) Caching data on faster storage tiers

b) Explicit migration, where for example, users explicitly tag their data for a “lower”
tier of storage (cheap and/or slow), but the ESD system needs to cache the data
enroute to tape.

c) Overflow, where for example a particular deployed ESD system is unable to handle
new data stores to disk without flushing old data to tape.

d) Transparent (and/or non-transparent) data migration, e.g., data migrates from
tape to disk in response to full or partial read requests through one of the ESD
interfaces.
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6. Function shipping – support the transfer of compute kernels to the storage system and
process data somewhere in the I/O path. This reduces data movement which is costly
on Exascale systems.

7. Compatibility – for backwards compatibility with existing climate and NWP applica-
tions, the system must expose or support existing APIs, e.g.,

• a NetCDF interface

• an HDF5 interface

• a GridFTP interface

• a POSIX file system interface

• a suitable RESTful interface

In particular, it shall be possible to create data using one interface and accessing the
data without conversion using another.

These mandatory requirements are accompanied by supporting requirements:

1. Auditability – upon request, object-specific operations need to be logged, in particular,
all creations, retrievals, and updates discriminated by users.

2. Configurability – A system wide configuration of all available storage resources and
their performance characteristics must be possible.

3. Notifications – A tool or user may subscribe for a object and be notified if certain
modifications are made to the object. This allows to watch the changelog of objects
efficiently without polling.

4. Import/Export – tools to support data exchange in or out of the ESD system. Depend-
ing on the format, conventions for mapping the format internal metadata or suppyling
metadata needed to meet internal ESD metadata requirements.

5. Access control – it should be able to restrict access to objects, supporting several roles,
e.g., data center staff, users, projects.

• Data sharing – In particular, the system should make it simple to share data with
other researchers.

3.2. Non-Functional Requirements

For a productive use in a data center, these requirements are mandatory:

1. Performant — coping with volume/velocity and delivering adequate bandwidth and
latency. This also means the system is efficient and exploits available performance from
hardware (network and storage technology), at best 90%+ of the available raw network
bandwidth and storage system throughput is achievable from applications.

2. Reliable — stored data is durable. In transit data corruption and silent data corruption
is detected and corrected. In case an uncorrectable error occurs, the data that is affected
can be identified and the still correct parts of affected objects shall still be accessible.
Reliability includes:

• Fault Tolerant — able to detect and repair hardware and software failures.

• Highly-available — data access shall be possible even with partially broken hard-
ware and software, thus, meeting expectations of users similar to that they have
of conventional disk sub-systems.
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3. Versatile — able to utilise existing heterogeneous storage infrastructures, including, but
not limited to

• existing traditional storage systems such as tape, object store, and parallel file
system,

• existing non-traditional storage systems such as the HDFS, and

• potential new storage systems such as burst buffers or NVRAM.

4. User-friendly – the system shall provide a good usability, this includes:

• Transparency — hides specifics of the storage landscape and does not require
users to set and define technical parameters specifically to a given system.

• Portability — code that uses the developed APIs should work in different data
centers, i.e., with different hardware and sofware.

5. Cost-Effective — the software system should be affordable and maintainable by data
center staff at exascale.

6. Standards based — using interfaces, formats and standards which maximise re-usability.

ESD Middleware Architecture 39/132



CHAPTER 4. USE-CASES

4. Use-Cases

This chapter dicusses some use-cases for a middleware to handle earth system data. Sec-
tion 4.1 starts with a high level perspective to common workloads in climate and weather
forecasts. It follows an introduction of involved stakeholders/actors (see Section 4.2) and
systems (see Section 4.3). Section 4.4 and following are the actual use cases. Use cases can
extend each other, and are generally constructed in a way that they are not limited to the
ESDM but also apply to similar middleware. In addition, the use of backends is kept abstract
where possible, so that in principle implementations can be swapped with only minor semantic
changes to the sequence of events.

4.1. Climate and Weather Workloads

The climate and weather forecast communities have their characteristic workflows and ob-
jectives, but also share a variety of methods and tools (e.g., the ICON model is used and
developed together by climate and weather scientists). This section briefly collects and groups
the data-related high-level use-cases by community and the motivation for them.
Numerical weather prediction focuses on the production of a short-time forecast based on
initial sensor (satellite) data and generates derived data products for certain end users (e.g.,
weather forecast for the general public or military). As the compute capabilities and require-
ments for users increase, new services are added or existing services are adapted. Climate
predictions run for long time periods and may involve complex workflows to compute derived
information such as monthly mean or to identify certain patterns in the forecasted data such
as tsunamis.
In the following, a list of characteristic high-level workloads and use-cases that are typically
performed per community is given. These use-cases resemble what a user/scientist usually
has in mind when dealing with NWP and climate simulation; there are several supportive
use-cases from the perspective of the data center that will be discussed later.

NWP

• Data ingestion: Store incoming stream of observations from satellites, radar, weather
stations and ships.

• Pre-Processing: Cleans, adjusts observation data and then transforms it to the data
format used as initial condition for the prediction. For example, insufficient sampling
makes pre-processing necessary so models can be initialized correctly.

• Now Casting (0-6h): Precise prediction of the weather in the near future. Uses satellite
data and data from weather stations, extrapolates radar echos.

• Numeric Model Forecasts (0-10+ Days): Run a numerical model to predict the weather
for the next few days. Typically, multiple models (ensembles) are run with some per-
turbed input data. The model proceeds usually as follows: 1) Read-Phase to initialize
simulation; 2) create a periodic snapshots (write) for the model time, e.g., every hour.

• Post-Processing: create data products that may be used for multiple purposes.

– for Now Casting: multi sensor integration, classification, ensembles, impact models

ESD Middleware Architecture 40/132



CHAPTER 4. USE-CASES

– for Numeric Model Forecasts: statistical interpretation of ensembles, model-combination

– generation of data products like GRIB files as service for customers of weather
forecast data

• Visualizations: Create fancy presentations of the future weather; this is usually part of
the post-processing.

Climate Many use cases in climate are very similar:

• Pre-Processing: Similar to the NWP use case.

• Forecasting with Climate Models: Similar to the NWP use case, with the following
differences:

– The periodic snapshots (write) uses variable depending frequencies, e.g., some
variables are written out with higher frequencies than others

• Post-Processing: create data products that are useful, e.g., run CDOs (Climate Data
Operations) to generate averages for certain regions. The performed post-processing
depends on the task the scientist has in mind. While at runtime of the model some
products are clear and may be used to diagnose the simulation run itself, later scientists
might be interested to run additional post-processing to look for new phenomena.

• Dynamic visualization: use interactive tools to search for interesting patterns. Tools
such as VTK and Paraview are used.

• Archive data: The model results are stored on a long-term archive. They may be used
for later analysis – often at other sites and by another user, e.g., to search for some
interesting pattern, or to serve as input data for localized higher-resolution models.
Also it supports reproduceability of research.

Note that compared to NWP there is more dynamic and flexibility needed in climate fore-
casting. Scientists may run prototypical code simulating novel features and creating new data
products. They may use many different tools on different sites to post-process and visualize
data and, over time, new methods may be found to interact with data model output.

4.2. Roles and Human Actors

This section introduces the involved actors and provides an overview to the use cases ad-
dressed in this chapter. Research is often funded in relatively short term projects with a set
of defined improvements to the state of the art. Projects are often embedded with already
existing institutions such as universities or research laboratories. Figure 4.1 visualises the
project perspective to data creation and analysis. An experimenter usually prepares and runs
a model, the preparation may include ingestion of data (migration of data into ESD) and pre-
processing this data. An analyst analyzes model output and generates useful data products.
In this process, he/she may retrieve a selected subset of data to a local machine to foster
rapid data exploration. These use cases shall be supported on an exascale demonstrator. In
general, we refer to scientists as users of ESDM.

Commonly, scientists share technical infrastructure such as compute and storage systems
with other groups within an organisation. But as scientists collaborate across the boundaries
of their institution, the operation of, e.g., a data center is outsourced and embedded into a
separate organisation (such as the DKRZ, ECMWF or Met office) with the different organisa-
tions as stakeholders. Yet, it is not uncommon to find smaller systems operated by individual
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Figure 4.1.: Different roles and tasks commonly seen within an earth system related project.

research groups for analysis tasks. ?? illustrates the various actors that are involved in data
management within and across sites. A role in this context does not translate to persons, but
a person may fill multiple roles, but also multiple persons may collaborate on a single role.

The use cases described in this chapter, are illustrated in Figure 4.2. In general, by use case
we mean a typical workflow that may consist of multiple steps that are run sequentially or
in parallel (concurrently). It covers the execution of applications (Simulation), the pre/post
processing of data needed to drive applications, the concurrent simulation and postprocessing,
i.e., while the simulation runs we already produce relevant data products, the simulation
coupled with in-situ postprocessing, the simulation coupled with interactive visualisation,
the simulation coupled with tools for big data analytics. These use cases are built on the
generic use cases for independent write and read.
An experimenter (user) has a use case in mind that consists of multiple steps (jobs) that are
run sequentially or concurrently. He/she submits a job of the workflow to the job scheduler
which assigns resources on the supercomputer and starts the execution of the job script.
Optionally, it may use the ESDM interfaces to steer data migration and staging or additional
optimizations. The job script runs on one of the allocated nodes and processes a sequence
of instructions such as running of applications. An application may use the ESDM interface
directly or via an existing API such as NetCDF indirectly.

4.2.1. Credentials and Permissions of Actors for Data Access

The introduction captured the logical view for the different actors managing and using data.
A more technical perspective can be described as follows. There are three general types of
actors who can interact with an earth system storage resource:

• Unprivileged Users (e.g, external partners, that only download or read available data)

• Priviliged Users (Project participants, with varying privileges)

• Administrators (Site/Infrastructure operators)

In the following, we use the term object to refer primarily to something with equivalent
semantics to a file. A more fine grained object access will also be available via any APIs
exposed by the service.

Unprivileged User

An unprivileged user is someone who has only read-only access. These users can:

• navigate content, using faceted browse against public tags,
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Figure 4.2.: Overview of described actors and use cases.

• list all (public) tags to which they have access,

• given a tag, list all tags carried by objects with the first tag,

• given a list of tags, list all tags carried by objects with all members of that list,

• given a tag list, list all objects with the union set of all those tags,

• retrieve any visible object from the list of objects presented by any tag list,

• interact with any visible object via limited read only operations.

Privileged Users

A privileged user is someone who has CRUD access to (their) content within the archive as
well as all the abilities of an unprivileged user applied to their own content. They can:

• create, retrieve, update, and delete content within prescribed quotas,

• control access to their objects (see below),

• assign tags to objects,

• navigate both public or (own) private tags.

Controlling access:

• Users can create “group” identifiers, and associate user identifiers with that group.

• They must themselves be members of any group they create.

• They can add/remove any other user identifiers known to them to that group.

• How users find the identifiers of other users is not defined here.
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• If they use the identifier “public” for a group, then users in this group (who may also
include the special identifier ”anonymous”), then users in this group will have read-only
access to these objects.

• Users can assign any group identifer of which they are a member to any object they
create. In doing so, they make “their” objects into “shared” objects (except for the
public group as defined above, where they are simply making the object read-only to
that group).

• Any user with “shared” access has the same privileges for that object as the original
owner, except that of modifying or removing the group tag.

– This means they can delete, update, and retreive the object. Of course deleting it
will disassociate the group tag.

• Users can list the groups of which they are members, and list the members of any of
those groups.

Note that this usage of group is not identical to the concept of UNIX groups, because users
control their definition.

Administrators

Administrators can:

• start and stop any service,

• access all data held by all priviledged users,

• manage privileged users: create, update, delete users,

• allocate quotas, i.e., define available storage space for users and groups,

• retreive usage information,

• configure the layout of content in the service against available storage resources,

• migrate content within the storage resources (a process that might temporarily disable
user access while the migration takes place)

• configure any required compute, cache, and network services.
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Compute Nodes I/O
Nodes
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System

Figure 4.3.: A typical supercomputer with compute notes connected via a high performing
network interconnect and a dedicated storage system.

4.3. Systems

This section describes the most important hardware and storage components that are used
by the use cases. Each system has a description, and if applicable a list of related subsystems.
In addition, for every subsystem risk factors and failure modes of the system are collected,
which then can be easily addressed by the individual use cases.
Each system comes with a short description, an illustration briefly explaining the architecture,
a list of associated risks as well as a list of associated subsystems. It follows a more detailed
description of each section:

System Description: A brief description of the system, common practices and relations to
other systems.

Risks: Typical risks and failure modes associated with the system.

Subsystems: If the system devides into subsystems, a list with references to each subsystem.

4.3.1. System: Supercomputer

System Description: An HPC system here is assumed to be a cluster computer with 100
to 100.000 cores/nodes. The nodes are connected via a network, often a specialised high-
throughput, low-latency interconnect (e.g., Infiniband). An HPC system usually does not
stand by itself but is also connected to a high-performance storage system. Figure 4.3 illus-
trates a commonly seen deployment of a supercomputer, though many details are ignored
as the exact topology depends on the specific applications and systems deployed. Resource
allocations are commonly managed using a job scheduler that allows users submit jobs.

Risks:

• Hardware failures (a growing concern in expectation of exascale)

• Data loss and corruption (silent)

Subsystems:

• Compute Nodes: The raw compute resources. CPUs + Memory

• Storage System: A network attached storage system. Disk/SSD based, and maybe
long-term (e.g., Tape) (see Section 4.3.2)

• Applications (see Section 4.3.3)

• Job Scheduler: Applications/Tasks are submitted to a batch system that manages
resource allocations. (see Section 4.3.6)
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Figure 4.4.: A more nuanced variant of a common deployment model for storage systems.
Data and metadata are handled by differently configured hardware.

Proc 1 Proc 2 Proc n

Solve Solve Solve
...

...

Figure 4.5.: A typical parallel application where work is distributed accross a number of
processes that collectively solve a bigger problem.

4.3.2. System: Storage System

System Description: A system to provide (high performance) access to stored data. Usually
a large disk-based system, that exposes either a file system or and object store to read/write
streams of data. For metadata access or small random I/O (e.g. database systems) SSD
based systems are common. For long-term archival also automatic tape libraries are wide
spread. Figure 4.4 illustrates the structure of a typical online high performance distributed
storage system, that also discriminates between metadata and data.

Risks:

• Data loss / Media Failures/Wear

• Performance Degradation over time / Aging

Subsystems:

• I/O Servers with different configurations for metadata and data

• Arrays of storage media/drives

4.3.3. System: Application

System Description: A parallel application that utilizes a HPC system to collaboratively
solve a large task (for example as listed in Section 4.1). Many applications use MPI to coor-
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Figure 4.6.: Integration and responsible of a ESDM in a climate/weather workflow.

dinate and exchange data across compute nodes. Figure 4.5 illustrates how work represented
by the colourful boxes is devided and distributed to be handled by multiple processes.

Risks:

• Slow to adopt changes

Subsystems: Applications commonly use

• Library (Data Description): HDF5/NetCDF, ... (see Section 4.3.4)

• MPI: Concurrency Control and Communication

4.3.4. System: Software Library (Data Description)

System Description: Climate/NWP codes commonly use libraries to produce portable data
formats and also to some extent achieve optimized I/O performance. Examples are HDF5,
NetCDF, Adios, CDI-PIO, XIOS.

Risks:

• APIs may change as the library evolves, requiring Applications and an ESDM to adapt

• Abstractions made by library may be inadequate in the future

Subsystems: We ignore/assume no subsystems for the software libraries for this considera-
tions. But it is common for a software library to depend on other specialized libraries.

4.3.5. System: ESDM

System Description: The earth system middleware. The middleware sits in between the
applications and plugins to interact with various data backends. The middleware decides
on the storage backend and exposes characterizations of the data centers as well as assumed

ESD Middleware Architecture 47/132



CHAPTER 4. USE-CASES

data access patterns to be used by backend plugins to realize a fitting segmentation and
distribution of domains in the application to storage objects and fragments. The ESDM
manages data in virtual containers and provides a data model (see Chapter 5.) In principle
the ESDM in the use cases could be any high-level middleware.

Subsystems: We ingore/assume no subsystems except of ESDM backends for the use case
discussion.

4.3.6. System: Job Scheduler

System Description: Users submit jobs that run an application to job schedulers. The job
scheduler will assign resources to a job and start the job. The ESDM and the job scheduler
are assumed to cooperate (see use case in Section 4.4.3.

Risks:

• No noteable risks at this point.

Subsystems: We ingore/assume no subsystems for job scheduler.

4.4. Use Cases

This section covers the actual use cases as they are addressed by an earth system middleware.
To prevent use cases to become overwhelmingly complex, sub use cases are formulated that
can extend or make use of each other. For example it is assumed if not otherwise mentioned
that the writes/reads handed to a middleware are handled as outlined in Section 4.4.1 and
Section 4.4.2 respectively. The particular examples for independent reads and writes are
ignorant of concrete backend. In a similar fashion the use case describing how simulations
are handled are kept generic, so that a detailed use-case for a POSIX can be swapped with
a use-case that describes the handling for e.g., Lustre. Section 4.4.3 and following address
current and anticipated (future) workflows used by weather and climate researchers.
Each use case features a description, involved actors, pre and post conditions, a flow of events
and exceptions. Application use cases in addition have a priority rating and a description of
the domain decomposition on the compute nodes and on storage. The following list describes
the content of each field in detail.

Use-Case Description: A short description of the use case.

Priority: A rating on the importance of this use case and a short explanation why.

Actors/Systems: The involved actors and systems (seeSection 4.2 and Section 4.3).

Data/Domain Description and Decomposition: A logical description of the domain and
physical domain decomposition across nodes and on the storage system.

Pre-Conditions: Conditions that have to hold before the use case starts.

Post-Conditions: Conditions that have to hold after the use case finished.

Related Use-Cases: A list of other use cases that are related or are used by the use case.
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Flow of Events: A list of actions and events that are triggered as the use case is handled.

Exceptions: A list of exceptions and failures that may occur and how they are handled.

4.4.1. UC: Independent Write

Use-Case Description: A process (e.g., a scientific application or a library) intends to write
data using the ESDM interfaces. The ESDM will determine a mapping and invoke a backend
to write data to actual storage targets. In addition metadata information for later usage are
written or updated.

Pre-Conditions:

• Parallel application with potentially multiple processes has been started

• ESDM has been loaded with a definition of a virtual container used for output

• Process: Tries to write data from a single variable to an ESDM virtual container

Post-Conditions:

• Data of the variable has been transferred from process memory to some storage devices

• Application can reuse the memory that has been written out

Flow of Events:

1. Process: announces to write a subset of data from a specific domain

2. ESDM: identifies storage devices to store the data based on system conditions and data
properties

3. ESDM: maps domains to storage backends that will be responsible for the data.

4. ESDM: initiates writes of data by invoking backends.

5. Storage backends: drain data onto the storage.

6. ESDM: updates metadata.

There are many variants of this use case depending on the conditions.

4.4.2. UC: Independent Read

Use-Case Description: A process (e.g., a scientific application or a library) intends to read
data using the ESDM interfaces. The ESDM has to lookup the metadata and discover
available fragments. A domain filling set of fragments has to be found and a storage backend
is tasked with reading and reconstructing the requested data from the actual storage targets.

Pre-Conditions:

• Parallel application with potentially multiple processes has been started

• ESDM has been loaded with a definition of a virtual container that contains at least a
single variable

• Process: tries to read a single variable from an ESDM virtual container
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Figure 4.7.: Sequence diagram for handling independent writes. A process issues a write
call to the ESDM. The middleware will create a new container if no container
already exists. The ESDM collects information about the storage system and
determines a domain mapping. The backends responsible for handling a certain
storage system are invoked. Multiple different backends may be involved, but
each backend is in charge of draining the fragment to a device. Related metadata
is updated.

Post-Conditions:

• Data of the variable has been retrieved and is now available in the application as part
of their domain view.

• The data may be cached (e.g., by the ESDM, the OS/Node or the storage system)

Flow of Events:

1. Process: announces to read a subset of data from a variable domain

2. ESDM: identifies storage backends responsible for the data, i.e., map domains to storage
backends.

3. ESDM: initiates read of data on storage.

4. Storage: provides data

4.4.3. UC: Simulation

Simulations are the main data producers on weather and climate related HPC systems. Many
reading and writing clients are using the persistent storage systems (currently mostly PFS)
to periodically write snapshots that can be used to continue a simulation in case of failure,
but more importantly, that is used to analyse the results of simulation runs.
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Figure 4.8.: Sequence diagram for handling independent reads. A process issues a read request
to the ESDM. The middleware has to lookup related metadata to determine
fragments required to reconstruct a domain. An ESDM storage backend will
interface with the actual storage systems and fills the request buffer with the
reconstructed domain.

Use-Case Description: A user requests a job to be spawned on multiple nodes to perform
a simulation of the earth system. The simulation periodically writes out data for multiple
variables, thus the use cases assume a bursty behavior. The different variables are written at
different frequencies. For a detailed handling of the different phases refer to the section on
the flow of events and Figure 4.10.

Priority: High; The standard use-case for simulation driven science in most data centers.

Actors:

• Scientist (initiating the job submission)

• Application (a coordinated parallel application, that collaborates collectively on sth.)

• Process (the application is realized by N processes. Processes are assumed to perform
work independently.

• ESDM

• Storage devices (could be anything to store, this is a generic use case)

• Workload manager (responsible to distribute jobs across the cluster hardware)

Data/Domain Description and Decomposition: A variety of different approaches to struc-
ture the logical domains of a model are possible depending on the model implementations.
This use case uses a layered two-dimensional grid in illustrations but other structures are also
possible. Figure 4.9 provides an abstract view to the relation of processes and the grid.
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Proc 1 Proc 2

Proc 3 Proc 4
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Figure 4.9.: Example domain decomposition of a logical grid and how the data maybe even-
tually distributed accross multiple processes.

Commonly, a model consists of multiple variables and each variable may vary for a given
coordinate over time. Variables may be written at different frequencies and variables may
differ in resolution. Some simulations use multiple grids, e.g., a region may have a higher
resolution then the remaining:

• A 2D Grid

• Multiple variables

• Time series: per timestep a subset of variables is stored each into a single NetCDF file

• Potentially multiple domains with different resolutions

For simulations in regard to the middleware we mainly care about how the data is distributed
on the nodes, and how it later gets layed out on the storage system:

• Node view: a subset of the data domain is stored in the main memory of each node.

• Storage view: somehow the data of the variables’ domain is serialized into ESD variables
and fragments

Pre-Conditions:

• Input data is ready.

• The job is about to start by the resource manager.

• The user application has credentials to read the input data.

• Storage system has adequate health.

Post-Conditions:

• Written data has to be in a consistent state; ready to be read by subsequent applications.

Related Use-Cases:

• Uses: Independent Read (Section 4.4.2)

• Uses: Independent Write (Section 4.4.1)
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Flow of Events:

1. Scientist: submits a job to run an application with two defined virtual containers, one
for IN and one for OUT.

2. Workload manager: eventually allocates resources to start the job.

• Workload Manager: Using the information about the virtual container trigger
actions, e.g., pre-staging of input data into local storage hardware or reserving
bandwidth and storage space on output devices with limited capacity such as
NVRAM.

3. Application opens the IN container (read-only) in collective mode.

4. ESDM: optimizes the container for read mode (optionally done during staging mode).

5. Application opens the OUT container (write-only) in collective mode, allocate known
space if necessary.

6. ESDM: prepares the container for write mode.

7. Application: announces to read initial simulation data.

8. See UC: Read, it might be collective (better) or independent.

9. Application: runs the time series of computation:

a) Process: Read auxiliary data (if necessary), see UC: Read

b) ESDM: identifies storage devices

c) Process: Computes (and communicates)

d) Process: Writes subset of variables, see UC: Write

10. Application: closes the container.

11. Application: finishes computation and terminates.

12. Workload Manager: free the resources, manage evtl. stage occupied local storage re-
sources.

Exceptions:

1. Applications crashes between two time steps or before regular termination.

2. Consistency of virtual container is faulty.

3. Network problems (Link Failure, Switch Failure) lead to premature termination of job.
ESDM has to clean up references to incomplete container.

4. A failure occurs the last snapshot does not complete. As a result the index for the last
snapshot maybe broken. The ESDM has clean up unreferenced fragments.

4.4.4. UC: Pre/Post Processing on a existing Data

Before a simulation can run, input data from satellites, weather stations and other sources
has to be converted into a representation that matches the grid of the simulation. Similarly,
simulations output a lot of raw data to be flexible to perform at simulation-time unexpected
analysis. Pre- and post processing jobs are therefore an integral part of the workload mix at
supercomputing sites but also on smaller local installations.
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Figure 4.10.: Sequence diagram for the simulation use case. A user submits a job with IN
and OUT destinations specified. A job manager will spawn the actual job
by allocating nodes and ordering to start the application code on each node.
Usually simulations need to read in a set of initial conditions. It will then
iteratively compute one time step after another, while occasionally (usually at
fixed frequencies which may vary per variable) writing snapshot data to be used
during analysis or to restart an interrupted simulation.
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or other arbitrary serialization to storage
possibly optimzed for e.g. single specific access pattern

e.g. stripe size 5

Some possible access patterns for pre/post processing:

Figure 4.11.: The logical domain view, a serialization and how it is striped accross a storage
system. The grey grids below illustrate possible access patterns, but the layout
on storage is not optimal for any of the shown access patterns.

Use-Case Description: A user submits a pre/post processing job to the workload manager
requiring to read datasets from one or more input sources. Ideally, the task is described using
a common tool or a framework for data transformations (e.g. CDO). There are countless
possibilities for type of calculations performed and for the regions that need to be accessed
in the logical domain (see Figure 4.11) Many analysis workloads access time series data, thus
require to access similarly-structured files with the same pattern. ?? illustrates the sequence
of events in more detail.

Priority: High, Researchers routinely have to perform pre/post processing

Actors:

• Scientist

• Pre/Post Processing Application (e.g. CDO)

• Supercomputer

• ESDM

Data/Domain Description and Decomposition: In alignment with the other use cases, a
Cartesian grid is assumed but many other grids are in principle handled in similar manner.
Figure 4.11 illustrates the logical decomposition, an example serialization and the distribution
across a storage system. The producing application decided for which access pattern the
serialization is favorable, in many situations the provided serialization is suboptimal for the
transformation.
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Pre-Conditions:

• Dataset is available via ESDM (because of producer termination or epoch)

• The dataset maybe available, but may have suboptimal fragmentation.

• A common description/framework for post processing is used (e.g. CDO)

Post-Conditions:

• The pre/post processing region of interest result is accesible by the user.

• The dataset container is improved by additional indexes or additional fragments for
faster access next time.

Related Use-Cases:

• Uses: Independent Read (Section 4.4.2)

• Uses: Independent Write (Section 4.4.1)

Flow of Events:

1. Scientist: submits a postprocessing job, multiple virtual containers for INPUT and
OUTPUT may be specified.

2. Workload Manager: eventually allocates resources and starts the job.

3. Pre/Post processing may open multiple files one after another (e.g. time series)

a) Process: opens the INPUT (see UC: Read Section 4.4.2)

b) Process: performs transformation or analysis (e.g. compute average)

4. Process: Writes a transformed dataset (see UC: Write Section 4.4.1)

5. Process: Possibly, creates plot or film of analysis.

Exceptions:

1. Requiring to ensure clean up of unreferenced/inconsistent data is inherited from Read-
/Write use cases (see Section 4.4.2 and Section 4.4.1)

4.4.5. UC: Concurrent Simulation and Postprocessing for Pipelines/Workflows

For weather prediction it is common to have postprocessing pipelines responsible for the
generation of value-added services. In expectancy of formal definition of workflows and
increased use of containerization this use case describes how an ESDM would need to realize
automatic postprocessing as soon as data becomes available.

Use-Case Description: A processing pipeline is set up that constantly receives new input
data, for example measurement data from a satellite system. Periodically, the most recent
satellite data is fed to a simulation as input to a simulation (see Section 4.4.3). As simulations
write snapshots, value-added products are generated in postprocessing steps. For example in
a NWP setting warnings or a weather forecast (compare Section 4.1).
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Figure 4.12.: Sequence diagram for the flow of events for a standalone pre/post processing
task. Depending on the analysis task, no output may occur until all data from
a time series was gathered.
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Simulation 1: start t=1

Simulation 1: start t=2

Forecast window

...then used for
Forecast

and Warnings updated
Forecast
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Figure 4.13.: Illustration of the domain and a possible pipeline. New observational data is
constantly added, and then used in simulations. The simulation output is then
used by postprocessing tasks to compile specific forecasts and warnings.

Priority: Low - Not in scope of project to integrate with in-situ postprocessing tools. Also
other systems such as the workload manager need to be adapted to support this.

Actors:

• Scientist

• Application

• Supercomputer

• ESDM

• Pre/Post Processing Framework

Data/Domain Description and Decomposition: The input data may be in various formats
with a domain layout that is not optimal for the simulation. For simplicity, conversion
steps are ommited in the description, but if necessary a transformation would correspond to
UC: Pre/Post Processing (see Section 4.4.4). Figure 4.13 illustrates an observation system
that provides data in portable container format (could also be an ESDM container). The
observation data is then used as initial conditions for a simulation, the domain decomposition
and resulting output matches the description in UC: Simulation (see Section 4.4.3). Finally,
the output data is postprocessed for which the domain description, again, corresponds to UC:
Pre/Post Processing (see Section 4.4.4).

Pre-Conditions:

• Sufficient resources to start simulations and postprocessing workfloads available.

• A pipeline is provided in a machine readable format.

• Simulation preconditions as described in UC: Simulation apply (Section 4.4.3)

– Input data is ready.

– The job is about to start by the resource manager.

– The user application has credentials to read the input data.

– Storage system has adequate health.
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Post-Conditions:

• Postprocessing can compute results as soon as an epoch completes.

• Combined task is hopefully faster than traditional approaches (generate, write, [read,
transform, write], read postprocess, write result)

Related Use-Cases:

• Uses: Independent Read (Section 4.4.2)

• Uses: Independent Write (Section 4.4.1)

• Adapts: Simulation (Section 4.4.3)

• Adapts: Pre/Post processing on an existing Data (Section 4.4.4)

Flow of Events:

1. Observation System: Observations are constantly stored and timestamped.

2. ESDM: handles storage on storage system and potentially transforms data as needed
by pipeline/workflow.

3. Workload Manager: periodically allocate resources to spawn new jobs with most recent
data

a) Application: A simulation is started as outlined in UC: Simulation (Section 4.4.3)

b) Application: opens the INPUT (see UC: Read Section 4.4.2)

c) ESDM: Serves the input. This is another time for ESDM to transform data.

d) Application: Loop

i. Application: writes subset of variables

ii. ESDM: makes data available to postprocessing immediately (e.g., inform work-
load manager to schedule postprocessing job)

iii. ESDM: writes snapshot async

4. Repeat.

Exceptions: Multiple failure modes are possible, but they are all inherited by the used use
cases only may require to clean up inconsistent/incomplete fragments and containers:

1. Simulations can fail (see UC: Simulation Section 4.4.3)

2. Pre/Post Processing of existing data may also fail (see Section 4.4.4)

4.4.6. UC: Simulation + In situ post processing

A common problem with post-processing applications is that data is first written to storage,
just to be read again from another consumer for postprocessing. This unnecessarily stresses
the storage system, because if it is known in advance that an average for an area needs to be
calculated, then the generating application can notify or perform the postprocessing on the
node where the data is already present.
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Figure 4.14.: Sequence Diagram
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Proc 1 Proc 2

Proc 3 Proc 4

Simulation
+ Post-Proc

Simulation
+ Post-Proc

Simulation Simulation

Figure 4.15.: The logical domain is decomposed and distributed accross multiple processes.
The darker cells denote a region that requires postprocessing. The processes
assigned to handle these regions are also tasked to directly compute a postpro-
cessing result. This way it is possible to avoid unnecessary reading from the
storage system for known postprocessing tasks.

Use-Case Description: A job is spawned on multiple nodes which collectively run a simu-
lation of the earth system (see Section 4.4.3). The job contains information about necessary
postprocessing steps. Alternatively, the job maybe part of workflow, and the postprocessing
steps are derived from the workflow. As the simulation proceeds, a number of postprocessing
calculations are performed directly on the nodes that already hold the generated data.

Priority: Low - Not in scope of project to integrate with in-situ postprocessing frameworks.

Actors:

• Scientist

• Application

• Supercomputer

• ESDM

• Pre/Post Processing Framework

Data/Domain Description and Decomposition: The logical model domain corresponds
to the domain description and decomposition in the UC: Simulation (see Section 4.4.3).
Candidates for in-situ postprocessing can be derived from UC: Pre/Post processing on an
existing Data (Section 4.4.4). Figure 4.15 illustrates how the domains are decomposed and
which computational loads are performed by a certain process (only simulation or simulation
with post-processing).

Pre-Conditions:

• The postprocessing tasks are indicated in the job script or in a workflow.

• This use case inherits the pre conditions of UC: Simulation (Section 4.4.3)

Post-Conditions:

• All simulation output data is now in a consistent state and ready to be read by subse-
quent applications.

• Postprocessing tasks on a subset of the domain are completed without requiring to first
write and then again.

• The postprocessing results are written in a consistent state.
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Related Use-Cases:

• Uses: Independent Read (Section 4.4.2)

• Uses: Independent Write (Section 4.4.1)

• Extends: Simulation (Section 4.4.3)

• Extends: Pre/Post processing on an existing Data (Section 4.4.4)

Flow of Events:

1. Scientist: submits a jobs to run an application with containers for input and output
specified. In addition a list of required postprocessing is provided (provided by the job
script, derived from a workflow or possibly learned automatically).

2. Workload manager: eventually allocates resources to start job. (ESDM can optimize
prior to job start see Section 4.4.3).

3. Application opens the IN container (read-only) in collective mode.

4. ESDM: optimizes the container for read mode (optionally done during staging mode).

5. Application opens the OUT container (write-only) in collective mode, allocate known
space if necessary.

6. ESDM: prepares the container for write mode.

7. Application: announces to read initial simulation data.

8. See UC: Read, it might be collective (better) or independent.

9. Application: runs the time series of computation:

a) Process: Reads auxiliary data (if necessary), see UC: Read

b) ESDM: identifies storage devices

c) Process: Computes (and communicate)

d) Process: Writes subset of variables, see UC: Write

e) ESDM: As data becomes available postprocessing tasks are executed

f) Post-Processing Framework: (only by affected processes) perfoms postprocessing

10. Application: closes the container.

11. Application: finishes computation and terminates.

12. Workload Manager: free the resources, potentially unstage occupied local storage re-
sources.

Exceptions:

1. Simulation can fail and if snapshots are being written consistency checks need to be per-
formed and unnecessary fragments require clean up (see UC: Simulation Section 4.4.3).

2. Postprocessing could fail
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Figure 4.16.: Sequence Diagram
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Figure 4.17.: Domain Illustration

4.4.7. UC: Simulation + In situ + Interactive Visualisation

Periodically writing snapshots of the model state typically slows down the simulations con-
siderably, because the simulation has to wait for the I/O systems to finish writing a snapshot
before it can continue. Additional resources such as I/O nodes or burst buffers can be used
to flush data asynchronously from the application and, thus, prevents climate applications
from waiting for I/O. An alternative can be to inspect simulations directly by using in-situ
visualisation. Section 4.4.8 describes a similar use case that applies big data analytics to
detect anomalies before notifying a user for in-situ inspection.

Use-Case Description: A job is spawned on multiple nodes which collectively run a simu-
lation of the earth system (see Section 4.4.3). As the simulation proceeds a user can render
the current state of the simulation using a visualization tool. Over time, the user may choose
to change the camera view, which variables are included in visualisation.

Priority: Low - Not in scope of project to integrate with in-situ frameworks.

Actors:

• Scientist

• Application

• Supercomputer

• Visualisation Cluster

• ESDM

Data/Domain Description and Decomposition: The logical model domain corresponds to
the domain description and decomposition in the UC: Simulation (see Section 4.4.3). In ad-
dition the camera window requires to be rendered: Depending on the position of the camera,
different compute nodes and visualisation nodes have to communicate. Each visualisation
node is only responsible for defined region of the cameras view (e.g. top left quarter of the
domain).

Pre-Conditions:

• Input and output destinations are accessible to the user.

• A allocation to a supercomputer is granted by the resource manager.

• A allocation to a visualization cluster is granted (possibly part of the same super com-
puter).
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Post-Conditions: From an ESDM perspective no post-conditions have to hold because no
data is written. Alternatively, if a user decides to start storing snapshots, the post-conditions
of UC: Simulation apply (see Section 4.4.3).

Related Use-Cases:

• Adapts: Simulation (Section 4.4.3)

Flow of Events:

1. Scientist: submits a jobs to run an application with containers for input and output
specified. In addition, a list of required postprocessing is provided (provided by the job
script, derived from a workflow or possibly learned automatically).

2. Workload manager: eventually allocates resources to start job. (ESDM can optimize
prior to job start see Section 4.4.3).

3. Application opens the IN container (read-only) in collective mode.

4. ESDM: optimizes the container for read mode (optionally done during staging mode).

5. Application opens the OUT container (write-only) in collective mode, allocate known
space if necessary.

6. ESDM: prepares the container for write mode.

7. Application: announces to read initial simulation data.

8. See UC: Read, it might be collective (better) or independent.

9. Application: runs the time series of computation:

a) Process: Reads auxiliary data (if necessary), see UC: Read

b) ESDM: identifies storage devices

c) Process: Computes (and communicate)

d) Process: Writes subset of variables

e) ESDM: receives data and data is only buffered for a limited number of timesteps

f) ESDM: exchanges data within camera view to visualisation nodes

g) Visualisation: Renders a frame for current view (as user moves camara rerenders
may become necessary if not cached)

10. Application: finishes computation and terminates.

11. Workload Manager: free the resources, manage evtl. stage occupied local storage re-
sources.

Exceptions:

1. Simulation can fail and if snapshots are being written consistency checks need to be per-
formed and unnecessary fragments require clean up (see UC: Simulation Section 4.4.3).

2. Visualization cluster may fail. It could be a responsibility of the ESDM to re-spawn
the visualization In terms of data consistency no actions are required by the ESDM.
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Figure 4.18.: Sequence Diagram
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4.4.8. UC: Simulation + Big Data Analysis + In situ analysis/visualization

Inline with the previous in-situ use cases (see Section 4.4.6 and Section 4.4.7), the goal is to
take stress off the storage system, in this case by being more selective about which snapshots
are permanently stored. Big data tools in combination with machine learning techniques
promise to allow computers to automatically apply complex analysis tasks on large amounts
of data. Such analysis is already applied to satellite data e.g. to track biodiversity, combating
desertification or detect wild fires. In the future, this might be also applied to faux satellite
images generated from model output (or the raw data directly) to better characterize the
impact on various ecological factors of climate policy actions.

Use-Case Description: A parallel job is started in which multiple nodes collectively simulate
the earth system (see Section 4.4.3). As the simulation runs, no data is written but using
big data analytics anomalies or behavior of interest is detected. A configuration defines what
actions are triggered. Additional jobs could be started or a scientist is notified about an
anomaly to perform additional analysis jobs or use visualization. Figure 4.19 provides a
sequence diagram on the flow of events for this use case.

Priority: Low - Not in scope of project to integrate with in-situ frameworks and big data
cluster systems.

Actors:

• Scientist

• Application

• Supercomputer

• Big Data Analysis Cluster (this could also be the supercomputer)

• ESDM

• Pre/Post Processing Framework

Data/Domain Description and Decomposition: Multiple domain decompositions are at
play in this use case. The simulation decomposition corresponds to the description in UC:
Simulation (Section 4.4.3) except that we assume no snapshots are permanently stored until a
trigger condition occurs. The big data analysis workloads do not follow a fixed structure and
heavily depend on the analysis performed. UC: Pre/Post Processing (see Section 4.4.4) illus-
trated multiple possible access patterns which also apply here. More sophisticated analysis
may be also responsive to the time evolution within a simulation, for example a storm might
move within the simulation, the analysis could follow the storm in which case a situation
similar to UC: Simulation + Interactive in situ Visualization (compare to uc: simulation +
in situ + cam) is more appropriate.

Pre-Conditions:

• Pre-conditions as with UC: Simulation

• User has nodes allocated for Big Data Analysis

• Available resources to add jobs as required for per-processing
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Post-Conditions:

• Data that users wants to preserve is permanently stored

Flow of Events:

1. Scientist: submits a jobs to run an application with containers for input and output
specified. In addition, a list of required postprocessing is provided (provided by the job
script, derived from a workflow or possibly learned automatically).

2. Workload manager: eventually allocates resources to start job. (ESDM can optimize
prior to job start see Section 4.4.3).

3. Application opens the IN container (read-only) in collective mode.

4. ESDM: optimizes the container for read mode (optionally done during staging mode).

5. Application opens the OUT container (write-only) in collective mode, allocate known
space if necessary.

6. ESDM: prepares the container for write mode.

7. Application: announces to read initial simulation data.

8. See UC: Read, it might be collective (better) or independent.

9. Application: runs the time series of computation:

a) Process: Read auxiliary data (if necessary), see UC: Read

b) ESDM: identifies storage devices

c) Process: Computes (and communicate)

d) Process: Writes subset of variables

e) ESDM: receives data but no permanent data is stored yet

f) ESDM: makes data available to big data analysis cluster (e.g. burst buffer)

g) Big Data Cluster: performs analysis (this may take a while)

h) ESDM: eventually analysis receives result. If trigger condition matches:

i. ESDM: may notify the user

ii. ESDM: may start to write snapshots

iii. ESDM: may invoke callback/run script

10. Application: closes the container.

11. Application: finishes computation and terminates.

12. Workload Manager: free the resources, manage evtl. stage occupied local storage re-
sources.

Related Use-Cases:

• Adapts: Simulation (Section 4.4.3)

• Adapts: Pre/Post Processing on a existing Data (Section 4.4.4)
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Figure 4.19.: Sequence Diagram
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Exceptions:

1. Simulation can fail and if snapshots are being written consistency checks need to be per-
formed and unecessary fragments require clean up (see UC: Simulation Section 4.4.3).

2. Big data cluster may fail. It could be a responsibility of an ESDM to resubmit tasks
for analysis.
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5. Architecture: Viewpoints

This section introduces a high-level overview for the earth system middleware (ESDM) and
discusses the architecture according to the 4+1 model (refer to Section 1.2). Section 5.1
starts with an architecture overview and introduces the core components and their relation
to wide spread technologies related to I/O in earth system software. Section 5.1 covers the
logical view, i.e, multiple aspects that affect how the ESDM operates and which semantics
apply internally as well as externally to users/software using the ESDM. In particular, this
includes the responsibilities of key components, the underlying data model and operations to
manipulate the data including a mechanism to manage epochs. In Section 5.4, the components
are related to their physical location within the hardware and software stacks. Section 5.5,
discusses active components and processes required by the ESDM and how they interact when
working concurrently.

5.1. Logical View: Component Overview

The architecture overview provides only a brief description of the core components of the
ESDM. We will refine the preliminary description of this document while we are building
the prototype. While this document provides an overview of the ultimate system, within
the ESiWACE project we will only be able to build a prototype for the central pieces. We
seek to demonstrate the benefit of the middleware for the community to sustain development
towards the presented vision. For more detailed descriptions in particular for the backends
refer to Chapter 6.

Problem Summary The ESD middleware has been designed to deal with the fact that
existing data libraries for standardized data description and optimized I/O such as NetCDF,
HDF5 and GRIB do not have suitable performance portable optimisations which reflect
current data intensive system architectures and deliver cost-effective, acceptable data access
bandwidth, latency and data durability.

The ESD Middleware To address these issues of performance portability, and exploiting
exiting shared, interoperable interfaces, based on open standards, we have designed the Earth
System Data (ESD) middleware (ESDM in short), which:

1. understands application data structures and scientific metadata, which lets us expose
the same data via different APIs;

2. maps data structures to storage backends with different performance characteristics
based on site specific configuration informed by a performance model;

3. yields best write performance via optimized data layout schemes that utilize elements
from log-structured file systems;

4. provides relaxed access semantics, tailored to scientific data generation for independent
writes, and;

5. includes a FUSE module which will provide backwards compatibility through existing
file formats with a configurable namespace based on scientific metadata.
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Together these allow storing small and frequently accessed data on node-local storage, while
serializing multi-dimensional data onto multiple storage backends – providing fault-tolerance
and performance benefits for various access patterns at the same time. Compact-on-read
instead of garbage collection will additionally optimize and replicate the data layout during
reads via a background service. Additional tools allow data import/export for exchange
between sites and external archives.
The ESDM aids the interests of stakeholders: developers have less burden to provide system
specific optimizations and can access their data in various ways. Data centers can utilize
storage of different characteristics.

A typical I/O-stack for an application using ESDM is shown in Figure 5.1. I/O of an existing
application using the NetCDF (or HDF5) interface is processed by the ESDM plugin of HDF5
which may decide to store data on one of the available storage backends such as Lustre or
an Object storage. Metadata may be stored in one of the supported metadata plugins. The
user does not have to make decisions regarding the storage or metadata backends to be used;
this decision is made by the middleware.

Details of the ESDM architecture is given in Figure 5.2. It provides more details about how
ESDM is embedded into the existing software landscape and its high-level components:

Applications Use existing storage interfaces such as NetCDF4, GRIB or they may use the
ESD interface.

Job scheduler The job scheduler assigns supercomputer resources to jobs. It may use the
ESD interface to inform about future activity and stage/unstage data.

Middleware libraries are adjusted to be layered on top of the ESD interface.

ESD Interface This represents the API exposed to other libraries and users. The API is
independent from the specific I/O backend used to store the data and supports structured
queries to perform complex data selections in the variables. The API is able to support the
complex workflows of future applications.

Datatypes The datatype component provides native datatypes that can be used by users
or other libraries to describe data points inside variables. We follow the approach pursued
by the MPI and HDF5 libraries, that is, we provide a set of native datatypes and a basic set
of datatype constructors that can be used to build custom derived datatypes.

Application

NetCDF

HDF5

Lustre

File system

Block device

ESDM VOL  Plugin

Object storage

Block device

MongoDB

Block device

ESDM

Figure 5.1.: A typical I/O-stack with the ESD middleware
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Tools and services

ESD

Application1

NetCDF4 (patched)

Application2 Application3

GRIB

HDF5 VOL (unmodified)

ESD interface

ESD (Plugin)

Scheduler Datatypes

Layout

cp-esdesd-daemon esd-FUSE

Site configuration

Performance model

Metadata backendStorage backend

RDBMSNoSQLPOSIX-IO Object storageLustre

Figure 5.2.: Overview of the ESD architecture, relevant components and relationship to ap-
plication and storage systems.
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Layout The layout component allows the middleware to store pieces of data on different
backends depending on specific site configuration contained in the performance model. The
layout component in this case takes responsibility for generating additional technical meta-
data describing data placement and for storing it in the appropriate metadata backend (i.e.
MongoDB). A more detailed description of what technical metadata is, is given in the rest of
this section.

Performance model This model predicts performance for data access using a site-specific
configuration that describes the characteristics of available hardware technology. It is used
by the layout component to make decisions of the data placement.

Scheduler The scheduler queues asynchronous calls from the API and processes them. It
dispatches calls to storage and metadata backends and uses the layout component to identify
benefical placement of data.

Metadata backend Responsible to store all technical and scientific relevant metadata pro-
viding efficient access and manipulation.

Storage backend These backends are responsible to transform ESD objects and data struc-
tures to storage-technology-specific representations.

Tools and services On top of ESDM several user space tools are provided, a few examples
are: The FUSE client provides backwards POSIX compatibility with existing applications.
The daemon checks the consistency and integrity of the data managed by ESDM, potentially
triggering actions to cleanup and replicate data. The copy tool allows to import and export
data from ESD to an existing storage infrastructure. It also serves as blue-print to embed its
capabilities into higher-level tools such as GridFTP.

5.2. Logical View: Data Model

While datatypes introduced by computer architectures and software libraries are important
for the data model, they are dicussed seperately in Section 5.2.4.
The data model of a system organizes elements of data, standardizes how they represent data
entities and how users can interact with the data. The model can be split into three layers:

1. The conceptual data model describes the entities and the semantics of the domain
that are represented by the data model and the typical operations to manipulate the
data. In our case, the scientific domain is NWP/climate.

2. The logical data model describes the abstraction level provided by the system, how
domain entities are mapped to objects provided by the system1, and the supported
operations to access and manipulate these objects are defined. Importantly, the logical
data model defines the semantics when using the operations to access and manipulate
the system objects. For example, a system object of a relational model is a table –
representing attributes of a set of objects – and a row of a table representing attributes
of a single object.

3. The physical data model describes how the logical entities are finally mapped to ob-
jects/files/regions on available hardware. The physical data model is partly covered by
the backends of ESDM, therefore, the descriptions will stop at that abstraction level.

1A entity of the domain model such as a car could be mapped to one or several objects.
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5.2.1. Conceptual Data Model

Our conceptual data model is aligned with the needs of domain scientists from climate and
weather. It reuses and extends from concepts introduced in a data model proposed for the
Climate and Forecasting conventions for NetCDF data2.

Motivation from climate The ESDM needs to store, identify and manipulate data variables,
V , containing scientific data from the (continuous) real or model world, discretised within a
“sampling” domain d, that is

V = V (d)

where V may be air temperature, for instance. The domain d describes the location for each
value of V , and is a function of its independent dimensions, for instance

d = d(Z(z), Y (y), X(x)))

where d is a three dimensional domain described by axes of height, latitude, and longitude,
sampled at coordinates found from the complete set of samples Z(z), Y (y), X(x). Each set
of coordinates x, y, z together specifies a location in the atmosphere at which V is specified.
The full dimensionality of the variable may exceed the number of dimensions needed to store
it — for example, if V is air-temperature at 1.5m, then V may be sampled (and stored) in
multiple 2-dimensional x, y arrays, with each additional array representing a different time
step. In this case, some of the extra dimensions may be stored in metadata accompanying
the scientific data.
Sampling may be regularly spaced along one or more of the dimensions, in which case the
coordinates (e.g., x) of the samples can be found algorithmically from the dimensions (e.g.,
X), and we describe the coordinate-grid as “structured” in those dimensions; but they can
also be irregularly spaced, and their individual positions may need to be stored, in which
case we describe the grid as “unstructured” in those dimensions. With an unstructured grid
it is not possible to fully understand the domain distribution of V unless all the coordinates
are themselves stored as variables (e.g., Z(z) is itself a variable defined at coordinates over a
1-dimensional domain spanning the height dimension). A coordinate grid may be structured
in one set of dimensions and unstructured in another.

The values of V at the coordinate positions may represent a value at that point, or be
representative of an area, volume or face of a cell defined in one or more of the dimensions.

In summary then, the conceptual (or scientific) data model consists of the following key
entities:

Variable: A variable, V , defines a set of data representing a discrete (generally scalar)
quantity discretised within a “sampling” domain, d. It is accompanied by

Metadata: which will include at the minimum, a name, but may also include units, and
information about additional dimensionality, directly (e.g. via a key, value pair such as that
necessary to expose z = 1.5m for air temperature at 1.5m) or indirectly (e.g. via pointers to
other generic coordinate variables which describe the sampled domain). There may also be
a dictionary of additional metadata which may or may not conform to an external semantic
convention or standard. Such metadata could include information about the tool used to
observe or simulate the specific variable. Additional metadata is also required for all the
other entities described below.

2"ACFDataModelandImplementation",Hasseletal,2017,GMDsubmitted
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Dimension: The sampling domain d is defined by Dimensions which define an a coordinate
axis. Dimensions will also include metadata, which must again, include at a minimum a
name (e.g. height, time), but may also include information about directionality, units (e.g.
degrees, months, days-since-a-particular-time-using-a-particular-calendar), or details of how
to construct an algorithm to find the actual sampling coordinates, perhaps using a well known
algorithm such as an ISO 8601 time.

Coordinate: Coordinates are the set of values at which data is sampled along any given
dimension. They may be explicitly defined by indexing into a coordinate variable, or implicitly
defined by an algorithm. When we talk about the coordinates, it is usually clear if we mean
the N-dimensional coordinate to address data in a given variable or if we just mean the (1D)
coordinate along one dimension.

Cell: The data values are known at points, which may or may not represent a cell. Such
cells are n-dimensional shapes where the dimensionality may or may not fully encompass the
dimensionality of the domain. n-dimensional shapes can be implicitly defined in which case
the Cartesian product of all dimensional coordinates forms the data ”cube” of the cell, but
they can also be explicitly defined, either by providing bounds on the coordinate variables (via
metadata) or by introducing a new variable which explicitly defines the functional boundaries
of the cell (as might happen in a finite element unstructured grid).

Dataset: Variables can be aggregated into datasets. A dataset contains multiple variables
that logically belong together, and should be associated with metadata describing the reason
for the aggregation. Variables must have unique names within a dataset.
Our conceptual model assumes that all variables are scalars, but clearly to make use of these
scalars requires more complex interpretation. In particular, we need to know the

Datatype: which defines the types of values that are valid and the operations that can
be conducted. While we are mostly dealing with scalars, they may not be amenable to
interpretation as simple numbers. For example, a variable may be storing an integer which
points into a taxonomy of categories of land-surface-types. More complex structures could
include complex data types such as vectors, compressed ensemble values, or structures within
this system, provided such interpretation is handled outside of the ESDM, and documented
in metadata. This allows us to limit ourselves to simple data types plus arbitrary length
blocks of bits.

Operators: Define the manipulations possible on the conceptual entities. The simplest
operators will include creation, read, update and delete applied to an entity as a whole, or
to a subset, however even these simple operators will come with constraints, for example, it
should not be possible to delete a coordinate variable without deleting the parent variable as
well. There will need to be a separation of concerns between operators which can be handled
within the ESDM subsystem, and those which require external logic. Operators which might
require external logic could include subsetting — it will be seen that the ESDM will support
simple subsetting using simple coordinates — but complex subsets such as finding a region in
real space from dimensions spanned using an algorithm or coordinate variable, may require
knowledge of how such algorithms or variables are specified. Such knowledge is embedded in
conventions such as the CF NetCDF conventions, and this knowledge could only be provided
to the ESDM via appropriate operator plugins.
Whatever the sampling regime and dimensionality, values of of a variable V will be laid out
in storage. In the next section (5.2.2) we present the logical data model associated with
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the storage, before presenting a mapping of the conceptual data model to storage in section
5.2.3).

5.2.2. Logical Data Model

The logical data model describes how data is represented inside ESDM, the operations to
interact with the data and their semantics. There are four first class entities in the ESDM
logical data model: variables, fragments, containers, and metadata. ESDM entities may
be linked by ESDM references, and a key property which emerges from the use of references
is that no ESDM entity instance may be deleted while references to it still exist. The use of
reference counting will ensure this property as well as avoid dangling pointers.
Figure 5.3 gives an overview of the logical data model.
Each of these entities is now described, along with a list of supported operations:

Variable: In the logical data model, the variable corresponds directly to a variable in the
conceptual data model. Each element of the variable sampled across the dimensions contains
data with a prescribed DataType. Variables are associated with both Scientific Metadata
and Technical Metadata. Variables are partitioned into fragments each of which can be
stored on one or more “storage backend”. A variable definition includes internal information
about the domain (bounding box in some coordinate system) and dimensionality (size and
shape), while the detailed information about which coordinate variables are needed to span
the dimensions and how they are defined is held in the technical metadata. Similarly, where
a variable is itself a coordinate variable, a link to the parent variable for which it is used is
held in the technical metadata. The ESDM will not allow an attempt to delete a variable to
succeed while any such references exist (see references). A key part of the variable definition
is the list of fragments associated with it, and if possible, how they are organised to span the
domain. Users may choose to submit code pieces that are then run within the I/O-path (not
part within ESiWACE implementation), such an operation covers the typical filter, map and
reduce operations of the data flow programming paradigm.
Fragments are created by the backend while appending/modifying data to a variable.
Operations:

• Variables can be created and deleted.

• Fragments of data can be attached and deleted.

• Fragments can be repartitioned and reshuffled.

• Integrity can be checked.

• Data can be read, appended or modified those operations will be translated to the
responsible fragments.

• Metadata can be atomically attached to a variable or modified.

• A variable can be sealed to make it immutable for all subsequent modifications.

• Process data of the variable somewhere in the I/O-path.

Fragment: A fragment is a piece (subdomain) of a variable. The ESDM expects to handle
fragments as atomic entities, that is, only one process can write a fragment through the
ESDM, and the ESDM will write fragments as atomic entities to storage backends. The
backends are free to further partition these fragments in an appropriate way, for example, by
sharding using chunks as described in section 5.2.3. However, the ESDM is free to replicate
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fragments or subsets of fragments and to choose which backend is appropriate for any given
fragment. This allows, for example, the ESDM to split a variable into fragments some of
which are on stored on a parallel file system, while others are placed in object storage.
Operations:

• Data of fragments can be read, appended or modified.

• Integrity of the fragment can be checked.

• Process data of the variable somewhere in the I/O-path.

Container: A container is a virtual entity providing views on collections of variables, allow-
ing multiple different datasets (as defined in the conceptual model) to be realised over the
variables visible to the ESDM. Each container provides a hierarchical namespace holding ref-
erences to one or multiple variables together with metadata. Variables cannot be deleted while
they are referenced by a container. The use of these dynamic containers provides support for
much more flexible organisation of data than provided by a regular file system semantics —
and efficiently support high level applications such as the Data Reference Syntax3.
A container provides the ESDM storage abstraction which is analogous to an external file.
Because many scientific metadata conventions are based on semantic structures which span
variables within a file in ways that may be opaque to the ESDM without the use of a plugin,
the use of a container can indicate to the ESDM that these variables are linked even though
the ESDM does not understand why, and so they cannot be independently deleted. When
entire files in NetCDF format are ingested into the ESDM, the respective importing tool
must create a container to ensure such linking properties are not lost.
Operations:

• Creation and deletion of containers.

• Creation and deletion of names in the hierarchical name space; the creation of links to
an existing variable.

• Attaching and modification of metadata.

• Integrity can be checked.

Metadata: can be associated with all the other first class entities (variables, fragments, and
containers). Such metadata is split into internal ESDM technical metadata, and external
user-supplied semantic metadata. Technical metadata covers, e.g., permissions, information
about data location and timestamps. A backend will be able to add its own metadata
to provide the information to lookup the data for the fragment from the storage backend
managed by it. Metadata by itself is treaded like a normal ESDM variable but linked to
the variable of choice. The implementation may embed (simple) metadata into fragments of
original data (see Reference).
Operations:

• Uses can create, read, or delete arbitrary scientific metadata onto variables and contain-
ers. A future version of the ESDM may support user scientific metadata for fragments.

• Container level metadata is generally not directly associated with variables, but may
be retrieved via following references from variables to containers.

• Queries allow to search for arbitrary metadata, e.g., for objects that have (experiment=X,
model=Y, time=yesterday) returning the variables and containers in a list that match.
This enables to locate scientific data in an arbitrary namespace.

3Taylor et al (2012): CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies.
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Figure 5.3.: Logical Data Model

Reference A reference is a link between entities and can be used in many places, references
can be embedded instead of real data of these logical objects. For example, dimensions inside
a variable can be references, also a container typically uses references to variables.
Operations:

• A reference can be created from existing logical entities or removed.

Namespace ESDM does not offer a simple hierarchical namespace for the files. It pro-
vides the elementary functions to navigate data: teleportation and orientation in the fol-
lowing fashion: Queries about semantical data properties (e.g., experiment=myExperiment,
model=myModel, date=yesterday) can be performed returning a list of matching files with
their respective metadata. Iterating the list (orientation) is similar to listing a directory in a
file system.
Note that this reduces the burden to define a hierarchical namespace and for data sharing
services based on scientific metadata. An input/output container for an application can be
assembled on the fly by using queries and name the resulting entities. As a container provides
a hierachical namespace, by harnessing this capability one can search for relevant variables
and map them into the local file system tree, accessing these variables as if they would be, e.g.,
NetCDF files. By offering a FUSE client, this feature also enables backwards compatibility
for legacy POSIX applications.

5.2.3. Relationships between the Conceptual and Logical Data Model

The conceptual data model and logical data model are described above, and summarised in
Figure 5.4. These UML and this version of the architecture do not fully deal with the issues
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Figure 5.4.: A non-normative UML version of the conceptual and logical data models. The fig-
ure includes example for the operators of the invidiual logical operations. These
UML are expected to be updated as the system is developed. See also figure 5.5.

around coordinate systems which are not described by simple monotonic coordinate arrays,
for which simple bounding boxes can be constructed. As noted above, to fully exploit more
complicated coordinate systems it will be necessary to describe those coordinate systems
more fully in the scientific metadata (LDM Sci Metadata) and potentially provide a plugin
to the system to handle them. This notion is shown in the UML by virtue of the optional
use of a named plugin to be identified in the scientific metadata, but the details of how that
will work has been postponed to the prototype development.
The key high level entities are the conceptual container, variable, and domain, which have
direct correspondence in the logical data model (see Figure 5.5) — however it is important to
recognise that these are not isomorphic relationships. For example, the concept of a domain
of a variable in the conceptual model is expanded in the logical data model to include sub-
domains associated with fragments, but the same class is used for both usages (LDM Domain
for both variable domain and fragment sub-domain).

5.2.4. Data types

The ESD middleware is specifically designed for weather and climate applications. These
applications usually use GRIB and NetCDF as data format to send and store data. Never-
theless, the middleware should be also able to support other types of applications that use
arbitrary libraries to represent and store data.
The NetCDF and HDF5 libraries define their own atomic and basic datatypes and then
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Figure 5.5.: Key relationships between conceptual and logical data models.

provide the APIs to build user defined datatypes from these. Generally speaking it makes
sense to support a restricted number of most common datatypes that application can use out
of the box and offer the possibility of extending these by means of additional APIs.
The support of native datatypes like H5T NATIVE INT or NC INT is driven by the necessity
to decouple the internal representation of the data from the way datais ultimately stored.
Using native datatypes data can be correctly reconstructed passing from one representation
to another. Similarly to other libraries, the ESD middleware will also support a restricted
range of native datatypes and a series of dedicated APIs to build user defined datatypes.

ESDM will support various atomic datatypes, integers, floating points, with different width,
precisions, endians and signs. The following table lists the possible atomic datatypes:

type description

ESDM T I8 char
ESDM T U8 unsigned char
ESDM T I16 short (16bit)
ESDM T U16 unsigned short (16bit)
ESDM T I32 integer (32bit)
ESDM T U32 unsigned int (32bit)
ESDM T I64 long long (64bit)
ESDM T U64 unsigned long long (64bit)
ESDM T F16 float (16bit)
ESDM T F32 float (32bit)
ESDM T F64 double (64bit)
ESDM T F128 long double (128bit)

ESDM T TIMESTAMP Date and time stamp

User defined complex datatypes include compound, variable length array, and array (fixed
length array). Compound is similar to a struct in the C language. It is an aggregation of
members, which are atomic datatypes or other complex datatypes. Array has fixed number
of base datatypes, which are atomic datatypes or other complex datatypes. A variable-length
array has a flexible length of base datatypes.
The definition of user defined datatypes have to be stored on back-end. When reading data
from datasets, these datatypes definition is retrieved from back-end and parsed, and proper
in-memory data structures and memories are allocated to accommodate the expected data
points. Complex datatypes are encoded and stored on back-end in various formats according
to different back-end. For example, for the Mero back-end, these definition will be stored in
Key/Value pair in index. The datatype is integral part of the stored variable and fragment
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Figure 5.6.: Interfaces for the compound, array and key-value based data structures in relation
to ESDM native datatypes.

to allow the storage backend to understand the data and process it on demand (not part of
the ESiWACE project). Figure 5.6 lists the required interfaces for compound, array and key
value based data structures.

ESD Middleware Architecture 82/132



CHAPTER 5. ARCHITECTURE: VIEWPOINTS

Figure 5.7.: The low and high level interfaces for standard interactions with the ESDM.

5.3. Operations and Semantics

This section collect the most important high-level and low-level APIs and allowed operations
on ESDM data structures. The ESDM should handle failures and many fragmentation related
decisions as transparently as possible while offering a more expressive I/O API for structured
data. The conceptual model (see Section 5.2.1) does not provide the notion of files, however,
some concepts familiar from file systems are also available in the ESDM system:

• Grouping: When existing applications are dealing with files, the ESDM will ensure that
a container is available which maps onto the application view of that file.

• Naming and Pointing: It is necessary to name things and point to them. For a tradi-
tional file this is accomplished using a name and a file system path. For the ESDM, we
allow providing a URI which would resolve to a virtual container description or that
allows to construct a virtual container on the fly linking all needed variables into it.
This is achievable because URIs are also available for all variables within a file.

Accessing data The API provides means to start reading and modification of data in an
asynchronous fashion and offers a wait() call to block until a particular operation terminates.
While the read/write is ongoing the data in memory that is read/or write must not be changed
by the application, otherwise the result is undefined.
The ESDM does not support concurrent read and write scenarios, data can only be written
or read (see Epoch), so the use of the ESD has one important ramification for application
views of files:

• All interfaces which exploit the ESDM middleware will only allow file open to either
read or write, but not both at the same time.

• There can only be a single application that writes to a particular variable or frag-
ment. We expect that an application is using some kind of coordination mechanism to
cooperate on reading and writing (more details will follow).

• One application may write data while another reads data that has been previously
written (in one previous epoch).

Sealed Variables/Containers ensure that data products are preserved and cannot be mod-
ified, thus URIs to these objects can typically be safely exchanged with peers. The system
may use this information to provide even more aggressive optimizations on read patterns.
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In Figure 5.7 provides an overview to the available ESDM core interfaces. The following
groups of interfaces can be distinguished:

Accessing existing data structures: ESDM data structures such as containers and variables
maybe opened using a open call using a object identifier or an URI. Likewise, it is possible
to close a structure again. A data structure has to be created before it is possible to read
and write data.

Creation of data structures: The information necessary to create a ESDM data structure
vary, therefore, each provides special methods to conveniently create the data structure. It
is possible to attach metadata to certain data structures such as variables and containers as
they are created.

Exclusive access and concurrency control: A single parallel application may temporarily
transfer own a container or variable exclusively using a locking mechanism. This is necessary
to facilitate data restructuring to rebuild upon failures or redistribute and optimize the data
structures under the hood. To allow scaling, it is sufficient that a single process of the (par-
allel) application maintains the lock. Locks will timeout to prevent permanent deadlocks.
Synchronization happens through the HDF5/MPI Vol plugin (see Section 6.3) but may be
implemented as a lightweight library on top of MPI as well. Any other parallel programming
language should implement such a library to reduce the burden while performing certain (tra-
ditionally metadata sensitive) operations. For efficient parallel write access, epoch semantics
are available which are discussed in more detail in Section 5.3.1. Open structures implicitly
are attached with a communication channel by using events and notifications to notify upon
changes in the epoch and prevent polling. The event and notification facilities of ESDM are
discussed in Section 5.3.2.

Low level interfaces: In some cases, it can be more efficient to interact with the low level
data structures provided by ESDM directly. This may be the case when ESDM may not yet
provide data abstractions that fit the application. In this case developers can use the low
level APIs to also access ESDM internal structures. A direct manipulation is not possible
and has to occur through an ESDM interface to ensure consistency.

5.3.1. Epoch Semantics

To allow applications developers and ESDM frontends to efficiently exploit concurrency the
ESDM offers epoch semantics. An epoch is an instant in time chosen by the parallel appli-
cation. Figure 5.8 illustrates the ESDM methods to interact with epochs and also illustrates
how the most recent readable view is reconstructed. Starting with epoch 0, all processes of
the parallel application participating in the I/O have to agree on moving to a new epoch.
This will finalize the outstanding write requests, make the changes durable and publish the
information about new data to other applications that registered to read this data. Writing
data follows the expected semantics for writes but when multiple writers update data from
the same variable coordinates, i.e., they overwrite data, the result is undefined. In fact, ap-
plications of which multiple processes write in the same epoch to the same data region are
considered to be wrong.
Closing a variable or finalizing ESDM will also move it to the next Epoch, thus finalize the first
version. Writing data to a variable that existed previously will overwrite the data of previous
epochs. Similarly, if a variable is opened for read/write access, the same application may now
read the data from a previous epoch. Reading data that has been written by another process
of the same application (i.e., a read after write) should be prevented, as users should use
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Figure 5.8.: Epoch API (left) and the implication of the epoch commit on the reconstruction
of the most recent readable view to the data.

means of communication inside the application to prevent this kind of access pattern. Thus,
a read request will never return the data of the current epoch but the merged perspective
of all previous epochs. In that sense, the epoch semantics is similar to the semantics of
transactions but application wide and only one transaction can be active at a given time. If
a parallel applications overwrites data stored in a previously by another application written
variable, then this is handled similarly to a new epoch.
When an application crashes, only the last committed epoch remains accessible, all other
data is immediately subject to garbage collection. If an application does not use the Epoch
and not finalize the ESD API correctly, then no data should become visible and durable on
the storage.

5.3.2. Notifications

Users or software may register hooks into the ESD notification system watching for certain
events to happen. This is handeled as a publish/subscribe service. Internally, important
events are logged and can be queried for the past. This prevents loss of information in case a
service is down for a period of time and ensured auditibility. Tools may use the information to
monitor ongoing activity and report performance behavior of the ESDM. Figure 5.9 depicts
an UML diagram for the interface to ESDM notifications.

Subscribe/Unsubscribe: A user or a process that wishes to be informed if a certain event
occurs can do so by subscribing to the ESDM Notification system. If notifications are no
longer necessary it can also unsubscribe again.

Events: ESDM will publish a number of standard events. Figure 5.9 lists a number of
candidate event types.

User Events: To allow users to define workflows that depend on ESDM, users can register
custom named events. Another process that is subscribed to such a event is notified when a
event with the name is published.

Event Log: To allow for audits and delayed triggering of followup tasks in case of failures
a event log ist kept. Applications and administrators may use a query interface to filter for
events that are relevant.
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Figure 5.9.: Notification Interfaces and examples for possible hooks available for subscription.
In addition, users may register application specific hooks.

5.4. Physical view

This section describes the relation between ESDM software components and physical hard-
ware components such as the compute nodes, processes and the storage systems. Figure 5.10
illustrates the interactions using UML diagrams.

Applications: An application process is active on one node and may depend on multiple
subcomponents. Usually, an application will use a library such as NetCDF or HDF5 that
provides a portable data description implementation. With ESDM these libraries are slightly
changed to call ESDM to handle I/O for them. It is possible that multiple processes with
ESDM are active on the same node in which case the ESDM should coordinate with processes
on the same node.

Daemons: Besides the application use case, a daemon process maybe necessary to ensure
unreferenced fragments are cleaned up and also to perform optimization without requiring
active applications. Multiple daemons maybe active at the same time.

Storage System: Multiple storage systems maybe deployed but for the discussion the ab-
stract representation is sufficient. No changes to the storage backends are expected. ESDM
Backends will interact with the storage systems using the interfaces that are exposed by the
storage system.

Site Configration: The ESDM assumes that there is a description of the site configuration
in a machine friendly format. As the system operators change the configuration of the
storage systems or the network, the site configuration may need to be updated manually or
automatically.

5.5. Process view

The process view describes active components and processes of ESDM, their interaction and
how they drive the I/O. The asynchronous I/O calls offered by ESDM still require an internal
thread to progress the I/O. Most components shown in Figure 5.2 are passive, that means
functions invoked perform certain operations and return upon completion. That means the
thread of the application or tool calling ESDM retains inside ESDM until the call is completed.
The FUSE client and potential service daemons are applications in that sense, they bring
their own thread that use the API of ESDM.
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Figure 5.10.: Physical viewpoint to the core components of the ESDM.

In the internal architecture of ESDM, the scheduler is the only exception and using threads.
Asynchronous I/O requests from user space are queued as operations to be performed by
the scheduler. The scheduler may decide upon the order the operations are performed lo-
cally. Internally, the scheduler hosts a queue for each storage backend that are served by a
(storage backend-specific) number of threads. A thread initiates the operation by calling the
plugin-specific function. It is the responsibility of the storage backend to ensure the data is
transferred to the respective storage. An involved storage system above of a capable network
may allow RDMA. In this case, the plugin has to announce the availability of data to the
server, then the server may fetch data from the client using RDMA and send a notification
upon completion. Due to the lack of such capabilities on most storage APIs, the capabilities
of pulling data is subject to a later version of ESDM.

ESDM daemon The ESDM daemon is in charge to constantly check the health of the
overall system. It will remove/garbage clean objects that were created by applications that
crashed. It may start a rebalancing/data migration between the available storage pools based
on simple policies. Also replicates of data may be removed to free space.

5.6. Requirements-Matrix

In this section we re-visit the requirements and show how these requirements are met by
some element of the architecture. Therefore, we list the requirements in Chapter 3 in brief
and describe how they are adressed by ESDM.

1. CRUD-operations: The data model provides CRUD operations for the objects and in
particular variables that typically hold the scientific data.

• Partial access: Read/write operations are supported on subdomains for a variable.
Internally they may fetch data from multiple fragments.

2. Discover, browse and list data: The ESDM namespace provides a query interface based
on scientific metadata.

3. Handling of scientific/structural metadata as first class citizen: Metadata provides
similiar operations than data. It can be as complex as a variable, in fact attaching
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a variable to another as metadata. Internal components of ESDM are aware of the
metdata. Metadata is used for searching data but also the structural information is
directly used by ESDM internally; backends make the final layout decision based on
the metadata.

4. Semantical namespace: provided by the metadata queries.

5. Supporting heterogeneous storage: Backends provide plugins to predict performance of
access patterns and to store/retrieve data on various storage systems. A single variable
consists of fragments that each cover a subdomain, potentially with another data layout
/ transformation; each fragment may reside on another backend allowing to distribute
a variable across different storage technology.

6. Function shipping: this is not yet described in the design. However, the structural
information about the data is a key enabler for function shipping as it allows the
storage backend to understand the data structures that may then be processed.

7. Compatibility: we offer a NetCDF and HDF5 interface and a POSIX file system using
FUSE. We will explore the possibility to to create data using one interface and accessing
the data without data copies using another.

These mandatory requirements are accompanied by supporting requirements:

1. Auditability: not described in this deliverable.

2. Configurability: ESDM provides the site configuration about available storage systems
and their performance characteristics.

3. Notifications: ESDM offers a publish/subscribe interface.

4. Import/Export: This is not explicitly described in this deliverable, but a tool can be
build on top of ESDM.

5. Access control: ESDM will use the available access control information but also store
the ownership and permissions inside the container.

• Data sharing: Data sharing is at the moment limited to a site. However, it would
be easy to link a tool that uses the NetCDF interface to ESDM to enable dy-
namic creation of virtual containers depening on the file name (that is a query for
metadata).

The non-functional requirements are resolved as follows:

1. Performant: by moving the serialization from the application into the backends and
by selecting appropriate backends depending on the access patterns using the layout
component and the performance model, the system should be able to make superior
placement decisions and optimize layout depending on the access pattern.

2. Reliable: Fragments and variables offer methods to check for integrity (e.g., using
checksums); ESDM offers replication of data, potentially transformed for performance,
thus offers reliable storage.

3. Versatile: By providing a storage backend for a storage technology and a performance
model, it can be integrated into ESDM.

4. User-friendly: The system hides specifics of the storage landscape and does not require
users to set and define technical parameters specifically to a given system. Therewith
it provides performance portable code.
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5. Cost-Effective: The software will be open source, it has to be proven that it is cost
effective.

6. Standards based: ESDM offers standard interfaces and uses standard interfaces for the
backends, making it possible to deploy it on current systems.
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6. Architecture: Components and Backends

This section discusses most relevant components and backends in technical detail. For every
component listed, the 4+1 view is described (refer to Section 1.2). The components and
backends are ordered according to their position within the I/O stack from top (application)
to bottom (backend).
Section 6.1 discusses the scheduling component that breaks down incoming read and write
requests into subsequent requests to create or receive multiple fragments. The scheduler relies
on a layout component to create a set of domain filling subrequests which is discussed in Sec-
tion 6.2. In most cases, an application will not interface directly with the ESDM middleware
but through a common frontend. Section 6.3 introduces a HDF5 frontend and also discusses
how message passing via MPI is realized outside of the ESDM. Section 6.4 addresses legacy
interfaces using FUSE to expose datasets via a configurable virtual file systems.
It follows the discussion of multiple backends. In particular Section 6.5 discusses a posix
backend to allow for interactions with parallel file systems. Object storage backends for Mero
(see Section 6.7) and WOS (see Section 6.8) are discussed, Besides data backends, also pure
metadata backends are possible allowing to use a existing software stacks that are typically
also residing on some kind of storage backend themself. Section 6.6 describes MongoDB bases
metadata backend.

6.1. Scheduling Component

I/O requests handled by the ESD middleware are received via the ESDM interfaces as they are
described in Section 5.3. In most cases, these requests must collect additional information
/ identify multiple fragments to fulfill a request. The ESDM scheduler is responsible to
progress potentially operations, coordinate requests, and invoke the appropriate handlers. In
particular, the scheduler will consult the layout component to determine which fragments to
create or use and which storage backends to use. For a discussion of the decision process for
a mapping of an I/O request to backends refer to Section 6.2 on the layout component.

6.1.1. Logical View

The scheduling component has two core responsibilities:

1. Accept incoming operations from the ESDM Interface and delegate them to handlers
possibly in separate threads.

2. Coordinate the progressing of complex operations and the response/completion of the
operations.

In Figure 6.1, the relation of the scheduling component (scheduler) to the rest of the ESDM
architecture is illustrated. A application will issue a request which is queued to the scheduler
for consideration. The scheduler will delegate the request to the layout component which will
also consult a performance model to make a decision (refer to Section 6.2 for details). The
resulting operations to internal objects (fragments) may then require a number of requests to
various ESDM backends. These subsequent operations are also coordinated by the Scheduler.
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Figure 6.1.: Logical view to the ESDM scheduling component. Applications issue requests
that are then handled and delegated by the Scheduler to other components.

Figure 6.2.: Process view to the ESDM scheduling component. Applications should when
possible issue I/O asynchronously. In either situation the ESDM scheduler may
execute multiple threads in parallel to gather or flush fragments to the backends
or make a layout decision.
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Figure 6.3.: Physical view to the ESDM scheduling component. The scheduler is only active
within the application process.

6.1.2. Process View

The scheduling component is responsible for the bulk of concurrency within the ESDM. Re-
quests arrive and have to be dispatched to appropriate handlers such as the layout component
or a ESDM backend. This approach is necessary so the ESDM remains responsive as new
requests arrive and because it considerably can speed up the reconstruction/flushing of re-
quested views. Figure 6.2 provides a overview to active and waiting process as requests are
being handled by the ESDM. Notice that Process 1 handles a asynchronous request which
allows the application to continue computation, while Process 2 depicts the synchronous case.
In both cases the ESDM will try to perform the domain reconstruction concurrently.

6.1.3. Physical View

An application may be spread out across many nodes and on each node have multiple running
processes. Each running proccess that is using ESDM as a scheduling component running
as is illustrated in Figure 6.3. Within ESDM, only the scheduler starts threads. The ESDM
scheduler does not directly expect any modifications or prerequisites from the storage sys-
tem, but changes to the configuration of the storage system should be reflected in the site
configuration.
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Figure 6.4.: An application that is using ESDM interfaces through the ESDM API (which
in many cases maybe only read/write calls). Eventually the scheduling compo-
nent has consult the layout component wich is responsible for returning a list
of Fragments which have to be read or written. To provide this list the perfor-
mance model is used which in turn queries the available backends and the site
configuration for an estimate.

6.2. Layout Component

The layout component is responsible for finding a mapping to storage that takes into account
information that are available through the conceptional and logical views to the data. In
addition, this section addresses some aspects that explain how the mapping is driven by
performance models and the site configuration.

6.2.1. Logical View

The layout component is invoked by the ESDM scheduler to break down incoming requests
into fragments that are beneficial from a data access and storage perspective. The layout
components responsibilities in more detail include the following:

• map (e.g., a domain) to fragments

• where to save new/additional/replica fragments?

• time estimates for reading a fragment (e.g., a callback per backend + config provided)

• time estimates for writing a fragment, in particular find a domain mapping

Figure 6.12 illustrates the embedding of the layout component into the larger ESDM architec-
ture. To find a mapping an important factor is the performance of the individual backends,
which requires to know backends are available. Section 6.2.1 therefor describes the initial-
ization process that loads the site configuration. Storage backends feature wildly different
performance characteristics, which is why the ESDM features a abstract performance model
that queries the individual ESDM backends to provide performance estimates which may also
depend on the data structure of the request. Section 6.2.1 describes the performance model
and decision process in more detail.

Initialization of the Layout/Performance Model

The layout decision requires knowledge of the available backends. The ESDM assumes a
machine-friendly site configuration to be available. The site configuration includes a list of
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Figure 6.5.: The initialisation process of the ESDM and the performance model and also the
available backends.

available backends for which the ESDM on initialization loads. Figure 6.5 shows a UML
sequence diagram of the ESDM initialisation process.

1. Application/Library: calls ESDM initialisation

2. ESDM:

a) reads configuration file

b) discovers and loads available backends + plugins + backend performance model

c) available backends are announced to the ESDM performance model for consider-
ation

3. After successful initialization control is returned to the calling application/library.

Performance Model and Decision Process

One approach to find the best backend/backends is to query every backend for a performance
estimate and choose the most affordable. Figure 6.6 shows in a simplefied example how the
decision process for a data center with three storage systems may look like. The decision would
gather estimates by calling the performance model (PM) of every backend. Performance
metrics may include:

• Latency

• Throughput (read/write)

• Energy/Cost

• Capacity/Fill level

Users or administrators may weight which factors are most important for their application.
The decision process has to be configurable because different sites have different requirements.
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Figure 6.6.: A layout decision component queries the performance estimates for every backend
and also takes the domain into account. Possibly other metrics such as the
available capacity for every backend may as well be considered.

Layout Reconstruction

When applications are reading data the ESDM Scheduler consults the layout component for
a domain reconstruction. A subdomain description is passed to the layout component as
part of request. The layout component then requests metadata for the container/variable to
be received. From the list of available fragments the layout component has now to choose a
subset of fragments that can be read efficiently from the backends. To decide which fragments
to choose the performance model is consulted.

6.2.2. Process View

For the layout component to types of processes can be distinguished:

• Layout Reconstructions and finding Fragmentations

• Gathering performance estimates

Figure 6.14 illustrates the possible process in am UMl diagram. Layout reconstructions may
result in multiple requests to multiple ESDM backends. How ESDM gathers/flushes these
fragments concurrently is described in Section 6.1.

6.2.3. Physical View

The layout component relies on multiple subcomponents, all of which only exist within the
application process. Figure 6.15 illustrates the distribution and relation of the components
across different hardware components. The site configuration is expected to be pulled from
a storage system that can withstand a large number of reading clients. Nodes may cache the
site configuration locally. The ESDM layout component does require prerequisites from the
storage system, but changes to the configuration of the storage system should be reflected in
the site configuration.

ESD Middleware Architecture 95/132



CHAPTER 6. ARCHITECTURE: COMPONENTS AND BACKENDS

Figure 6.7.: Multiple process are involved with most applications. For every node the per-
formance decisions maybe different, but in many cases it also maybe desirable
to find a estimate collectively. Ultimately the performance estimate needs to be
relatively cheap to compute.

Figure 6.8.: Physical view for the layout component an closely related components.
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Figure 6.9.

6.3. HDF5+MPI plugin

This section describes the implications on a existing parallel application that uses one of the
supported interfaces such as NetCDF4/HDF5. The semantics of the API calls will change
slightly but typically in a way that is backwards compatible.

6.3.1. Logical View

This subsection covers dealing with file names, opening and closing of containers as well
as concurrency semantics. We assume an MPI parallelized application uses HDF5 with
MPI support, e.g., parallel HDF5. The component diagram in Figure 6.9 illustrates how
a HDF5/NetCDF ESDM frontend would mediate between the ESDM and an application.
In addition, multiple processes using ESDM can coordinate using MPI, though only ESDM
component using MPI is the ESDM HDF5 VOL Plugin.

Dealing with file names

Traditionally, when opening a file with NetCDF the filename specifies the location, i.e., an
URI where the data resides on a storage system. We change the notion of the file name to be
the descriptor for a virtual container (virtual container descriptor). The virtual container can
be composed of multiple URIs to integrate different variables into one virtual environment
on the fly. Thus, from the reader’s perspective it does not matter if data of a model is split
into one or multiple physical files; upon read, all those files can be loaded together as if they
would already exist in one logical file. It is also possible to avoid the use of the metadata
backend; by specifying the locations of the variables on existing storage media, they can be
linked into a virtual container. One restriction to this approach is the limitation of the length
of file names. To avoid this limitation, we support a prefix to the filename: esd-cfg:/ that
leads to a simple JSON file that contains the actual definition of the container.

Open

Opening a container (as defined by the file name) in ESDM will trigger the master process
within the communicator to retrieve the necessary metadata from ESDM and broadcast it to
all participating processes. Since the metadata is serializable to JSON we can exchange the
metadata easily.
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Figure 6.10.

Concurrency semantics

In general, the system is designed for parallel applications of which processes access data
independently of each other. Still, metadata of internal objects such as containers and vari-
ables should be managed and updated explicitly by a single process of the application. That
means, within one parallel (MPI) application, some kind of coordination must take place to
allow the shared access to containers, variables and shards. A correct implementation for
this behavior will be performed within the HDF5 VOL plugin.
Data sharing between independent applications is intended to happen after an epoch has
been completed. It is not allowed that multiple parallel applications write data to the same
variable at the same time. This is considered to be sufficient for most scenarios, e.g., a model
produces some output; once the epoch completed, the produced data is post-processed.

Close

From the user perspective, closing a file that was opened in write mode, will make the
content of the file visible in ESDM and durable for subsequent accesses. Thus, it updates the
metadata, for example, incrementing the epoch of the variables and containers modified and
updating the reference counters.

6.3.2. Physical View

ESDM does not change anything of the placement of the processes run by MPI.

6.3.3. Process View

ESDM will start internally threads in the Scheduler component, however, these threads will
not call MPI functions or HDF5. The ESDM plugin in the HDF5 VOL may use MPI func-
tions (or the lightweight library) to coordinate access to central data structures. Figure 6.11
illustrates the proccess view as far as the HDF5 VOL plugin and MPI coordination is con-
cerned.
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Figure 6.11.
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Figure 6.12.: Based on a FUSE ESDM configuration different views to data are possible.
HDF5 files maybe created as soon as a job is known or on the fly.

6.4. Fuse Legacy + Metadata Mapped Views

Filesystem in Userspace (FUSE) provides a relatively simple means to export a view to data
as a virtual filesystem, but without the need for special privileges associated with similar
techniques. FUSE is thus a popular choice to achieve legacy support for applications that
require POSIX-like access semantics.

6.4.1. Logical View

Compatibility to legacy applications is the main motivation to provide a ESDM FUSE file
system. Allowing different views to the same data based on the available metadata informa-
tion is another motivation. Examples for metadata mappings to a hierarchical namespace
could be as follows:

• modelname/date/variable.h5

• region/date/modelname/variable.nc

The structure of the hierarchy could be up to the users. The limit at this point would be the
quality of available metadata as it is in already existing metadata catalogues. Figure 6.12
illustrates how the ESDM FUSE file system would be used by a scientist. In an ideal setting,
the ESDM has some time to analyse e.g. a submitted job script to figure out which HDF5
will be requested. The ESDM would then use the HDF5 creator to generate the HDF5 files
before the job is started/beginning to read from the file. After the ESDM HDF5 creator has
created the file, the ESDM FUSE would read and write from this file. If a generated it not
used for a while, it may be removed again to make room for more recent requests.

Access Semantics: HDF5 files usually allow to be modified to add metadata or update
variables and datasets. The ESDM legacy interface likely will be read only. A possible
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update of the original ESDM data structures to reflect changes made to the HDF5 view is
not planned, to avoid potential consistency conflicts. The structure of the HDF5 and the
directory structure of available files depends on a ESDM FUSE configuration.

6.4.2. Development View

Some applications may not be compatible to HDF5 with virtual object layer (VOL). For such
application it is necessary to export data stored within ESDM as actual HDF5 files. A FUSE
interface allows to automate the export without requiring to generate the actual HDF5 files
unless they are requested. Two approaches for exposing HDF5 files are:

• Recreate sections of HDF5/NetCDF files, as they are being read, on the fly. Potentially
very complicated, especially for read and write. Also not very desireable from a perfor-
mance perspecitve. Refer to https://support.hdfgroup.org/HDF5/doc/H5.format.
html for file format details.

• Write a brand new HDF5 file based on the requested data/query.

While it maybe in possible to fulfill requests to virtual HDF5 files without generating the
actual file, the architecture of HDF5 with different file format drivers leads and HDF5 internal
caching makes such an approach unfeasible.

Use HDF5 to create file on the fly

The ESDM FUSE interface for HDF5 files should act as a cache layer for HDF5 exports
generated on demand, while allowing to browser available datasets and variables from a file
system. Figure 6.13 illustrates this porcess in an UML sequence diagram. A legacy applica-
tion makes a request to the FUSE file system, which is handled by the ESDM middleware
that will use HDF5 to create a HDF5 file.

6.4.3. Process View

Following the reasoning in Section 6.4.2 HDF5 files would need be generated and stored
before file access requests can be handled. Figure 6.14 seperates the process of accessing a
available file and the actual generation of the file. If the application is already running and
the requests HDF5 file is not already present, the reconstruction can be performed on the
node of the application. If the application is not yet running, the scheduler could start a
reconstruction before the application is started. In both cases a component that generates
the HDF5 file is required which is represented by the ESDM HDF5 Creator.

6.4.4. Physical View

The provision of a FUSE legacy interface allows for a number different deployment models.
Figure 6.15 illustrates where the ESDM FUSE related component would be active within the
data center. To require only little modifications and exploit independant data access FUSE
is assumed to be available on the compute nodes. The scheduler may be modified to start the
ESDM HDF5 Creators before spawning a job. The actual ESDM data as well as temporary
HDF5 files would be stored and distributed across multiple storage systems.
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Figure 6.13.: The simplest approach to expose data to legacy applications by creating actual
HDF5 files on the fly and cache them on a filesystem.
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Figure 6.14.: Process view to a FUSE legacy backend for ESDM. An application browsers a
FUSE file systems which is generated based on the available metadata. As the
application opens a file, the ESDM creates a HDF5 file which can be then read
just a usual HDF5 file.

Figure 6.15.: Physical View: Allow legacy applications to access data stored to ESDM by
creating HDF5 on the fly or by scanning job files in advance.
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Figure 6.16.: Logical view to the POSIX backend. I/O requests arrive through the ESDM
API. The layout component provides a fragmentation (write: site config + perf
model / read: as stored in metadata + optimization candidate). As a result
actual I/O requests are processed by the progress component which calls the
backends. The backends and the datatype components work together to convert
data according to what is required (again and read and write differ).

6.5. Backend POSIX/Lustre (Using ESDM)

Most climate applications today read and write from and to parallel file systems such as
Lustre. The section describes how a POSIX-like backend to the ESDM would handle read
and write requests and organize the ESDM data structures.

6.5.1. Logical View

In the previous sections we have discussed how the scheduler (see Section 6.1) accepts requests
by applications and libraries and then consults the layout component (Section 6.2) to decide
on a layout. In this section we assume the POSIX backend was chosen. Figure 6.16 illustrates
the involved components and which components interact with each other. Requests made
to the POSIX backend can be classified into one of three types. On the one hand there are
read and write requests to the data. In addition there maybe metadata lookup, which will in
most cases relate to technical metadata. The following paragraphs explain each of this access
types in more detail.

Writing data To satisfy write requests this section extends the use-case description for
general writing (see Section 4.4.1). The sequence of events relevant to the POSIX backend
(also illustrated in Figure 6.17) unfolds as follows:
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Figure 6.17.

1. Progress: consults layout about:

• Which Backend?

• Which Fragmentation?

2. Scheduler: processes write calls for all fragments and hands data to POSIX backend

3. Layout: decides for specific backend that is suitable for the individual fragment (e.g.
row-way serialisation)

4. Backend: converts between file serialization and ESDM datatypes

For a POSIX backend many potential mappings to files and directories are possible. Which
mappings are the most efficient is an open research question and depends on the application.
A straight forware approach is to use directory structure to map hierarchical concepts e.g.
from netcdf or hdf5 such as groups and datasets. The files within dataset directory would
include a description of the domain and a additional directory that is used to store the actual
fragments.

Reading data Analog to the write case, the reading data with a backend extends the use-
case description for general reading (see Section 4.4.2). The sequence of events relevant to
the POSIX backend (also illustrated in Figure 6.18) unfolds as follows:

• Read arrives
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Figure 6.18.

• Progress receives requests and splits it potentially into multiple sub requests

• Layout loads metadata, consults indexes and collects a sufficient amount of fragments to
reconstruct requested (sub)domain in parallel and from the most ”affordable” backends

• Progress (potentially coordinated across multiple processes) issues requests to backends

• Backends fetch data and return Fragments

• Backend + Layout + Datatype perform necessary conversations

• Data is provided to application

Lookup: Section 5.2 introduced the ESDM data model. A backend is reponsible to store
a fragment and find the fragment again when it is requested. To allow for fast search for
required fragments, the POSIX backend will use indexes. In additional fragments written in
sequence from a linked list that allows to reconstruct a domain as well as an index in case a
index is damaged. Fragments metadata should allow for partial access of fragment. To allow
this a POSIX Fragment wraps the ESDM fragment to attach technical metadata relevant
only for the POSIX backend. A UML diagram illustrating the relationship between POSIX
Fragments and ESDM fragments is depicted in Figure 6.19.

6.5.2. Process View

Scheduler component The progress component is responsible for handling any sync calls
aswell as outstanding async calls that have to be passed to the backend.
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Figure 6.19.: The ESDM Fragment features a Metadata section that describes the position
within a domain. The actual data is simply a blob. Backends are free to extend
ESDM Fragments to their liking.

Figure 6.20.: Overview of processes that are necessary or interact/interfere with the POSIX
backend.

ESDM Compactor component The ESDM compactor may either reorganize POSIX data
snippets on their on.. e.g. when running as daemon that improves and maintains the system
health. As applications issue I/O the progress component may use the ESDM compactor
when the decision component determines feasible reorganization/compactification.

(Competing Load): Other resources may access the same storage backend, or even the same
data. For example workflows may compete for access to the same storage target. This may
influence the decisions used for compactification.

(Service Loads): Similarly, the backends usually employ service workloads that ensure sys-
tem health. How do ESDM and there workloads intefere with each other?

6.5.3. Physical View

Active software components related to the ESDM that are involved in handling requests are
spread across the application process and when they are finally written on the POSIX storage
system as illustrated in Figure 6.21. No changes to POSIX are Lustra are assumed, but a
POSIX backend will call the interfaces these storage systems expose.
Notice that POSIX in this graphic provides a performance model, which is technically not the
case for the current ESDM because the system runtime information such as fill level are not
communicated actively by the storage system but are instead collected by, e.g., the ESDM
POSIX Backend Plugin.

6.6. Mongo DB Metadata backend

A prototypical metadata backend will be realized using MongoDB. Advantages of using Mon-
goDB are that it scales horizontally with the number of servers, provides fault-tolerance and

ESD Middleware Architecture 107/132



CHAPTER 6. ARCHITECTURE: COMPONENTS AND BACKENDS

Figure 6.21.: Physical mapping of components to location of their execution?

that the document model supports arbitrary schemas.
Each type of object in the data model (container, variable, fragment) becomes a collection
with indices on certain fields. Multikey indices allow to index array fields such as the refer-
ences.

6.6.1. Logical View

Metadata

There are two methods to include metadata, large metadata is includes as a reference to
another variable containing the data, small metadata is embedded into the JSON of the
MongoDB document.
Besides scientific metadata, the dynamic mapping of data to storage backends requires further
metadata that must be managed. To distinguish technical metadata from scientific metadata,
an internal namespace is created. Relevant technical metadata is shown in Table 6.1 for
shards, variables and containers, respectively.
Metadata can be optional (O) or mandatory (M), and either is created automatically or must
be set manually via the APIs. Automatic fields cannot be changed by the user. Some of the
data can be automatically inferred, if not set manually, but manual setting may allow further
optimizations.
Some of the metadata is used on several places, for example, information about the data
lineage might be used to create several output variables. In our initial implementation, the
metadata is stored redundantly because it 1) simplifies search; 2) enables us to restore data
on corrupted storage systems by reading the metadata; 3) reduces contention and poten-
tially false sharing of metadata. An implementation might decide to reduce this by utilizing
normalized schemas.
References are the list of objects that are directly used by this object, e.g., other variables
that are used to define the data further.
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Metadata Field Creation Description

Domain M Auto The subdomain this data covers from the variable
Type M Auto The (potentially derived) datatype of this shard
Variable M Auto The ID of the varitechnical-on-metadata.texable this data belongs to
Storage M Auto The storage backend used and its options
References M Auto A list of objects that are referenced by this data
Sealed M Auto A sealed shard is read-only

(a) For a shard

Metadata Field Creation Description

Domain M Manual Describes the overall domain
Type M Manual The (potentially derived) datatype
Info M Manual The scientific metadata of this document
References M Auto A list of objects that are referenced by this data
Permissions M Auto/Manual The owner and permissions
Shards M Auto The list of shard objects for this variable
Sealed M Auto A sealed variable is read-only

(b) For a variable

Metadata Field Creation Description

Owner O Manual The owner of this file view (see the permission model)
Info O Manual Additional scientific metadata for this view
Directory O Manual Contains a mapping from names to variables
Environment O Automatic Information about the application run
Permissions M Auto/Manual The owner and permissions
References M Auto A list of objects that are referenced by this data.

(c) For a container

Table 6.1.: Excerpt of additional technical metadata
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6.6.2. Mapping of metadata

To illustrate the applied mapping, we use a subset of our NetCDF metadata described in
Section 2.2.2. The excerpt is given in Listing 6.1. The mapping of a single logical variable is
examplarily described in Listing 6.1.

Listing 6.1: NetCDF metadata for one variable

1 dimensions :
2 longitude = 480 ;
3 latitude = 241 ;
4 time = UNLIMITED ; // (1096 currently )
5 variables :
6 float longitude ( longitude ) ;
7 longitude :units = " degrees_east " ;
8 longitude : long_name = " longitude " ;
9 float latitude ( latitude ) ;

10 latitude :units = " degrees_north " ;
11 latitude : long_name = " latitude " ;
12 int time(time) ;
13 time:units = "hours since 1900 -01 -01 00:00:0.0 " ;
14 time: long_name = "time" ;
15 time: calendar = " gregorian " ;
16 short sund(time , latitude , longitude ) ;
17 sund: scale_factor = 0.659209863732776 ;
18 sund: add_offset = 21599.6703950681 ;
19 sund: _FillValue = -32767s ;
20 sund: missing_value = -32767s ;
21 sund:units = "s" ;
22 sund: long_name = " Sunshine duration " ;
23

24 // global attributes :
25 : Conventions = "CF -1.0" ;
26 : history = "2015 -06 -03 08:02:17 GMT by grib_to_netcdf -1.13.1:

↪→ grib_to_netcdf /data/ data04 / scratch /netcdf -atls14 -
↪→ a562cefde8a29a7288fa0b8b7f9413f7 - lFD4z9 . target -o /data/ data04 /
↪→ scratch /netcdf -atls14 - a562cefde8a29a7288fa0b8b7f9413f7 - CyGl1B .nc -
↪→ utime" ;

27 }

To simplify search and identify data clearly, data services such as the WDCC[?] and CERA[?],
that offer data to the community, request scientists to provide additional metadata. Normally,
such data is provided when the results of an experiment is ingested into such a database.
Example metadata is listed in Table 6.2. In existing databases, the listed metadata is split
into several fields, e.g. an address and email for persons, for simplicity only a rough overview
is given. Instead of encoding the history as a simple text field, it could indicate detailed steps
including the arguments for the commands and versions and transformations to reproduce
the data. This should include for each step, where and the time when it is performed, and
the versions of software used.
It is easily imaginable that most of this information could be useful already when the data is
created as it simplifies the search and data management on the online storage. Some of the
data fields become only available after the initial data creation, e.g., the DOI. Potentially the
data must be updated / curated after the data is created.

6.6.3. Example

This example illustrates data of a predictive model could be stored on the system and the
resulting metadata. The dimensionality of the underlying grid is fixed.
The application uses the following information to drive the simulation:

• Timerange: the simulated model time (from a starting datetime to the specified end)

• Longitude/Latitude: 1D data field with the coordinates [float]

• Temperature: Initial 2D field defined on (lon, lat)
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Metadata Description

Project The scientific project during which the data is created
Institute The institution which conducted the experiment
Person A natural person; could be a contact, running the experiment
Contact Reference to person or consortium
DOI A document object identifier; useful for identifying a data publication
Topic Some information about the topic of the data / experiment
Experiment Description of this particular experiment
History A list with the history and transformations conducted with the data

Table 6.2.: Excerpt of additional scientific metadata

A real model would use further parameters to estimate the temperature but these are sufficient
to demonstrate the concepts. This information is either given as parameter to the simulation
or read from an input (container). A mixture of both settings is possible.
The application produces the following output:

• Longitude/Latitude: 1D data field with the coordinates [float]

• Model time: the current datatime for the simulation

• Temperature: 2D field defined on (lon, lat, time) [float], containing the precise temper-
ature on the coordinates defined by lon and lat for the given timestep

• AvgTemp: 1D field defined on (time) [float]; contains the mean temperature for the
given time

Container

Upon application startup, we create a new virtual container that provide links to the already
existing input. In Listing 6.2, the metadata for the container is shown, after the application is
started. We assume it has used the APIs to provide the information (input, output, scientific
metadata). In this example, we explicitly define the objects used as input; it is possible
to also define the input as an already existing container. It is also possible to define the
input a-priori if the objectIDs are known / looked up prior application run. The intended
output variables could be given with their rough sizes. This would allow the scheduler to
pre-stage the input and ensure that there is enough storage space available for the output.
The environment information is inferred to the info object but can be changed from the user.
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Listing 6.2: JSON document describing the container

1 "_id" : ObjectId (".."),
2 " directory " : {
3 "input" : {
4 " longitude " : ObjectId (".."),
5 " latitude " : ObjectId (".."),
6 " temperature " : ObjectId ("..")
7 },
8 " output " {
9 " temperature " : ObjectId (".."),

10 " avgTemp " : ObjectId ("..")
11 }
12 },
13 "info" : { # This is the scientific metadata
14 "model" : { "name" : "my model", " version " : "git ...4711 " },
15 " experiment " : {
16 "tags" : [" simulation ", " poisson ", " temperature "]
17 " description " : " Trivial simulation of temperature using a poisson

↪→ process "
18 },
19 },
20 " environment " : {
21 "date" : datetime (2016 , 12, 1),
22 " system " : " mistral ",
23 "nodes" : ["m[1 -1000]"]
24 },
25 " permissions " : {
26 "UID" : 1012 ,
27 "GID" : 400,
28 "group" : "w", # allows read also
29 "other" : "r"
30 },
31 " references " : {
32 [ all links to used object IDs from input / output ]
33 }
34

Variable

The metadata for a single variable is build based on the information available in the container
(such as permissions) and additional data provided by the user. Indeed, part of the metadata
is replicated between container and variable as this preserves information about the creation
of the variable that will typically not change during the life time of the variable.
An example for the temperature variable is shown in Listing 6.3. When describing the
domain that is covered by the variable, there are three alternatives: 1) a reference to an
existing variable is embedded and the minimum / maximum value is provided. This allows
to reuse descriptive information as data has to be stored only once. Min and max describe
the multidimensional index of the subdomain in the variable that is actually referenced; 2)
data becomes embedded into the file. This option is used when the size of the variable is
small. An advantage of option 2) is that searches for data with a certain property do not
require to lookup information in additional metadata.
Similarly, information about the data lineage (history) can originally be inferred from the
objects linked in the directory mapping. In that case, the metadata of the referenced object
must be copied, if the original object is removed.
3) A plugin for the interpretation and mapping of the coordinate system is used. The plugin
name must be stored and the respective parameters to identify the coordinates stored.
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Listing 6.3: JSON document for temperature

1 "_id" : ObjectId ("<TEMPID >"),
2 " sealed " : true ,
3 " domain " : [
4 " longitude " : [ "min" : 0, "max" : 359999 , " reference " : ObjectId ("

↪→ ..") ],
5 " latitude " : [ "min" : 0, "max" : 179999 , " reference " : ObjectId ("..

↪→ ") ],
6 "time" : [ datetime (...) , datetime (...) , ... ]
7 ],
8 "type" : "float",
9 "info" : {

10 " convention " : "CF -1.0",
11 "name" : " temperature ",
12 "unit" : "K",
13 "long description " : "This is the temperature ",
14 " experiment " : {
15 "tags" : [" simulation ", " poisson ", " temperature "]
16 " description " : " Trivial simulation of temperature using a poisson

↪→ process "
17 },
18 "model" : { "name" : "my model", " version " : "git ...4711 " },
19 " directory " : {
20 "input" : {
21 " longitude " : ObjectId ("<LONID >"),
22 " latitude " : ObjectId ("<LATID >"),
23 " temperature " : ObjectId ("<TEMPID >")
24 }
25 },
26 " environment " : {
27 "date" : datetime (2016 , 12, 1),
28 " system " : " mistral ",
29 "nodes" : ["m[1 -1000]"]
30 },
31 " history " : [
32 ...
33 ],
34

35 " permissions " : {
36 "UID" : 1012 ,
37 "GID" : 400,
38 "group" : "w", # allows read also
39 "other" : "r"
40 },
41 " references " : {
42 [ all links to used object IDs ]
43 },
44 " shards " : [
45 ObjectId (< SHARD1 ID >),
46 # For a sealed object , the domains of its shards can optionally be

↪→ embedded :
47 { " reference " : ObjectId (< SHARD2 ID >), " storage " : ... , " domain " },
48 ObjectId (< SHARD3 ID >),
49 ObjectId (< SHARD4 ID >)
50 ]
51

Shards

The variable is split into multiple shards; metadata for one of them is shown in Listing 6.4.
Since we assume domain decomposition in the application, the longitude and latitude vari-
ables are now only partially stored in a shard. In the example, we assume two processes
create one shard each and the surface of the earth is partitioned into four non-overlapping
rectangles.
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Listing 6.4: JSON document for a shard of the temperature variable

1 "_id" : ObjectId ("<SHARD1 ID >"),
2 " sealed " : true ,
3 " variable " : ObjectId ("<TEMPID >"),
4 "type" : "float",
5 " domain " : {
6 " longitude " : [ "min" : 0, "max" : 179999 , " reference " : ObjectId (".."

↪→ ) ],
7 " latitude " : [ "min" : 0, "max" : 89999 , " reference " : ObjectId ("..")

↪→ ],
8 "time" : [ datetime (...) , datetime (...) , ... ]
9 },

10 " storage " : {
11 " plugin " : "pfs",
12 " options " : {
13 "path" : "/mnt/ lustre / testdir /file1",
14 },
15 " serialization " : "row -major"
16 },
17 " references : [
18 ObjectId ("<TEMPID >"),
19 ObjectId (".."),
20 ObjectId ("..")
21 ]

6.6.4. Physical View

The MongoDB servers will be deployed on the HPC cluster. Due to the scalability of the
infrastructure, the number of servers can be adjusted to the experienced load.

6.6.5. Process View

We are using the typical deployment of MongoDB including all the services it provides such
as the mongo daemon.
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6.7. Mero Backend

6.7.1. Logical View

Mero is an Exascale ready Object Store system developed by Seagate and built to remove
the performance limitations typically found in other designs. Unlike similar storage systems
(e.g. Ceph and DAOS) Mero does not rely on any other file system or raid software to work.
Instead, Mero can directly access raw block storage devices and provide consistency, durabil-
ity and availability of data through dedicated core components.

Clovis is the user-space interface exported by Mero for use by the Mero applications. Exam-
ples of Mero applications are: Mero file system client (m0t1fs), Lustre HSM backend (part of
Castor-A200). ESD middleware will also uses Clovis interfaces to access and manage Mero
system.
As an object storage, Mero has two types of ”objects”. In Mero, they are called Entities,
while in object storage, they might be called objects. These two types of entities are:
object, is an array of fixed-size blocks,
index, is a key-value store. An index stores records, each record consisting of a key and a
value. Keys and values within the same index can be of variable size. Keys are ordered by
the lexicographic ordering of their bit-level representation. Records are ordered by the key
ordering. Keys are unique within an index.

Mero defined a set of operations for every type of entities. Mero realm is a spatial and tem-
poral part of system with a prescribed access discipline. Objects, indices and operations live
in realm. An entity exists in some realm and has a 128-bit identifier, unique within a Mero
cluster and never re-used. Identifier management is up to the application, except that some
identifiers are reserved for system usage.
Generic operations for all entities are: create and delete. They are used to create a new entity
and delete an existing entity. Object has the following specific operations:

Mero Object Operation Description

READ
transfer blocks and block attributes

from an object to application
buffers;

WRITE
transfer blocks and block attributes

from application buffers to an
object;

ALLOC

pre-allocate certain blocks in an
implementation-dependent manner.

This operation guarantees that
consecutive WRITE onto

pre-allocated blocks will not fail
due to lack of storage space;

FREE

free storage resources used by
specified object blocks.

Consecutive reads from the blocks
will return zeroes.

Table 6.3.: Mero Object Operations

Index has the following specific operations:
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Mero Index Operation Description

GET
given a set of keys, return the

matching records from the index;

PUT

given a set of records, place them
in the index, overwriting existing
records if necessary, inserting new

records otherwise;

DEL
given a set of keys, delete the

matching records from the index;

NEXT

given a set of keys, return the
records with the next (in the

ascending key order) keys from the
index.

LOOKUP
given a key, check existence of a

record;

Table 6.4.: Mero Index Operations

ESD middleware can use Mero indices to store small data and metadata, and objects to store
raw data. For example, Mero indices can be used to keep track of containers, corresponding
variables and shard inside them. Each container will be represented as an index in Mero. The
metadata of this container, the metadata of all the contained variables, shards and chunks, is
stored as key-value records in this index. Data of variables, shards and chunks can be stored
as different Mero objects.

HDF5 file stored in a POSIX file system is identified by its full path name. ESD middleware
needs to keep the mapping from a HDF5 file to Mero identifier of the index. From this
index, ESD middleware can get all metadata for associated containers and variables and
other information. ESD middleware may store the mapping from HDF5 identity to Mero
index identifier in external configration storage, e.g. MongoDB, RDBMS, or POSIX file
system. Nevertheless, ESD middleware can also store this mapping in Mero index, too. This
index will be a pre-defined index, with well-known identifier. ESD middleware can initialize
this index at the first of system deployment, and consult it later for this mapping.

Writing data The following sequence extends the Use-Case description for general writing
(see Section 4.4.1).

• Progress: consult layout about:

– the identifier(s) of Mero indices to store or update metadata.

– the identifier(s) or Mero objects to store or update raw data. If this is a write to
non-exist container, identifiers are generated according to Mero rules.

• Progress: if Mero indices/objects don’t exist, create them with proper attributes

• Progress: GET some records from index if necessary to update some metadata, and
prepare metadata to write

• Progress: READ blocks from objects if write request is not block-aligned, i.e. partial
write. Prepare the in-memory buffer for destination blocks.

• Progress: WRITE buffers into blocks of corresponding objects with Mero Clovis object
WRITE interface.
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Figure 6.22.: Logical view to the Mero backend. I/O requests arrive through the ESDM API.
The layout component provides metadata. As a result actual I/O requests are
processed by the progress component which calls the backends. The backends
and the datatype components work together to convert data according to what
is required (again and read and write differ).
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Figure 6.23.: Mero backend sequence write

• Progress: PUT key-value records to index with Mero Clovis index interface.

• Progress: Update layout information if necessary

• Progress: Wait on Mero back-end until metadata and data are stable on Mero back-end.

• Progress: return to upper layer from ESD middleware

Reading data The following sequence extends the Use-Case description for general reading
(see Section 4.4.2).

• Progress: consult layout about:

– the identifier(s) of Mero indices to store or update metadata.

– the identifier(s) or Mero objects to store or update raw data.
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Figure 6.24.: Mero backend sequence read

• Progress: GET necessary key-value records from Mero index and parse the metadata
to get information needed by reading.

• Progress: With the metadata, layout, mapping the target read to proper object and
offset blocks.

• Progress: READ target blocks from objects, and fill in user buffers.

• Progress: return data to upper layer from ESD middleware

Lookup: The following algorithms are used to store metadata and the steps used to find
out the Mero object blocks mapped to fragments.
On a POSIX file system, a HDF5 file is identified by its full path. On a Mero back-end, ESD
middleware needs to keep the mapping from HDF5 identity to Mero index identifier. This is
a 128-bit integer. All the metadata of this HDF5 are stored in this Mero index as key-value
records. They are:

key value

Name String: the name (i.e. identifier)
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”ATTR” + Path

The attribute of the path. The
path is the format of

”/group1/group2/variable 1”. The
attribute may be encoded in some
format, e.g. JSON or something.
This will be defined in detailed

design.

”OBJ” + Path

list of 128-bit identifier of Mero
objects if the variable is stored in a

single object, this would be the
only identifier. If the variable is

partitioned into several shards, this
would be a list of identifier of Mero

object. The shard size and other
metadata would be stored in the

above attribute.

Datatype Name

Datatype definition in binary mode
or string. This is the named
datatype shared by multiple

variable.

... ...

Table 6.5.: Metadata Schema

The lookup process is to GET all records from Mero index, and parse them to reconstruct
the in-memory metadata.

6.7.2. Process View

ESD middleware will use Clovis interfaces to manage and access a Mero cluster.

Progress component: The progress component is responsible for handling any sync calls
as well as outstanding async calls that have to be passed to the backend. All Mero Clovis
operations are asynchronous (except for the wait() operations).

Clovis Instance component: Clovis instance is a collection of in-memory data structures
and their state machines. ESD middleware keeps a handle to this instance. All communica-

Figure 6.25.: Overview of processes that are necessary or interact/interfere with the Mero
backend.
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Figure 6.26.: Development View of Mero backend

tions with Mero is through this instance. Internally, Clovis uses Mero protocals to commu-
nicate with various Mero services.

Service Management component: Mero provides the Clovis interface to manage and access
its objects and indices. Mero also provide a serial of utilities to manage and confgure its
cluster, monitor various services, poll system events, and trigger specific operations. ESD
middleware can leverage these interfaces and utilities to communicate with Mero cluster, and
manage all kinds of services and configuration.
The main services that an appplication (here is ESD middleware) needs to communicate are:
MeroConfd (configuration and management), MeroRMS (transaction), MeroIOS (index and
object operations).

6.7.3. Development View

ESD middleware will use Clovis interfaces to manage and access a Mero cluster. ESD mid-
dleware code needs to link with Mero Clovis library to access Mero cluster. Clovis provides
interfaces in the C language, currently. All Clovis index and object operations are asyn-
chronous (except for the wait() operation). Clovis transaction is a collection of operations
atomic in the face of failures.

6.7.4. Physical View

Mero storage cluster is relatively an independent system in this case. It can be managed
by Mero utilities. It can also be serving other applications at the same time. That means,
ESD middleware can be one of the applications using this Mero deployment. Mero cluster
can be configured with different redundant parameters for its entities. Pool width, [data
units, parity units, spare units] for parity groups of an entity, etc. are those parameters
to determine the data redundancy model, data utilization, performance, and availability.
Different configurations have different mappings from logical data to its physical locations
on disks. But ESD middleware don’t have to care about this mapping. ESD middleware
uses Clovis to manage and access Mero entities (Mero indices and objects). If needed, ESD
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Figure 6.27.: Physical mapping of components to location of their execution

middleware can use Clovis to create entities with different redundant parameters than the
system defaults.
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Figure 6.28.: Logical view to the WOS backend. I/O requests arrive through the ESDM
API. The layout component provides a fragmentation based on site configura-
tion and performance model. As a result actual I/O requests are processed by
the progress component which calls the backends providing the needed meta-
data. The backends and the datatype components work together to convert
data according to what is required.

6.8. WOS Backend

This section describes the features of the WOS Backend and how it interacts with the different
ESDM components in order to perform the read and write activity on behalf of the user
applications.

6.8.1. Logical View

The DDN WOS object storage solution (see Section 2.4.1) represents a storage system archi-
tecture which manages data as objects, automatically storing files in the cloud in a geograph-
ically agnostic manner. Each object is stored with a unique OID that is used to retrieve the
related data, delete them of verify the existence. To interact with the WOS cluster, DDN
provides API for C++, JAVA and Python languages and an HTTP Restful interface; in par-
ticular operations as Put, Get, Delete, Exists, Reserve and PutOID are allowed in blocking
and non-blocking form.

Writing data: The following sequence extends the Use-Case description for general writing
(see Section 4.4.1).

• Progress consults layout about the choice of the most suitable backend and the proper
fragmentation.

• Progress sends data to WOS backend.
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Figure 6.29.: WOS backend sequence write

• WOS backend accepts the incoming data properly managing the correct datatype con-
version.

• WOS backend creates a new WOS Object.

• WOS Storage returns the corresponding Object Identifier (OID)

• WOS backend saves data to the WOS Storage

• WOS backend returns the OID to the Progress module

Reading data: The following sequence extends the Use-Case description for general reading
(see Section 4.4.2).

• Progress and Layout work together in order to eventually split the request into multiple
sub requests, one for each fragment to retrieve

• Layout collects the needed metadata related to the fragments to retrieve

• Progress forward the request to the WOS backend; multiple requests could be sent in
parallel
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Figure 6.30.: WOS backend sequence read

• WOS backend retrieves data from the WOS Storage based on OID (Object Identifier)

• WOS backend performs the needed datatype conversion

• WOS Backend returns data

• Data is provided to application

It is worth noting that WOS storage manages data in binary format only: no information
about data type need to be passed to the storage for writing or reading. The WOS backend,
the Layout and the Datatype performs the needed communications for properly managing
the different datatypes.

Lookup: WOS Objects relies on the concept of Object Identifier: each Object is associated
to a unique OID and once used an OID cannot be reassigned. OID is the identifier needed by
the application for accessing the object and retrieving its data. As stated before, objects are
saved into the storage in binary format (for instance mapped as a pointer to a void variable
in C++ code): user applications need to provide the proper mapping to the final datatype.
Fragments are associated to WOS Objects: the lookup phase is allowed by using the correct
OID stored in the metadata backend and provided to the WOS backend to perform the
association with the related object.

6.8.2. Process View

Progress Component The progress component is responsible to manage the interactions
with the WOS backend, in terms of synchronous and asynchronous call handling. It commu-
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Figure 6.31.: Overview of processes and entities involved in the interaction with the WOS
backend

nicates with the ESDM WOS Service exchanging the proper information about data trans-
ferring, metadata management and status of the processes.

ESDM WOS Service The ESDM WOS Service represents the middleware between the
progress component and the WOS System Storage. It accepts requests incoming from the
progress component concerning data and/or metadata management, fragments read and
write. The ESDM WOS Service is able to translate such requests into WOS Cluster call
which finalizes the operations to the WOS Storage. As supported by the WOS architecture,
the ESDM WOS Service is able to manage blocking and non-blocking calls on behalf of the
progress component.

WOS Cluster The WOS Cluster represents the remote host pool and services able to accept,
manage and finalize the incoming requests/data from the ESDM WOS Service. It hosts the
WOS Storage and physically handles the retrieval of the requested information triggered by
the higher level applications and services.

6.8.3. Development View

The interactions between the ESD middleware and the WOS Storage relies on a WOS interface
managed by the ESDM WOS Service. Such component represents the link between the ESD
middleware and the WOS Storage and Services providing the proper interfaces for interacting
with the WOS cluster. It is able to handle requests for synchronous and asynchronous
operations exploiting the blocking and non-blocking form of the WOS API calls. Tailored
to support the ESD middleware functionalities, it hides the internal features of WOS and
manages the translation between WOS and ESD datatypes.

6.8.4. Physical View

WOS Storage System relies on a pool of services and daemons in order to properly man-
age the incoming read and write requests. Such services are able to handle the entire WOS
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Figure 6.32.: WOS backend physical view

infrastructure from a hardware and software point of view, accepting and dispatching the
requests for getting/putting data (in a blocking and non-blocking form) to the proper node
instance inside the cloud and to the related storage. WOS configuration allows the admin-
istrator to define zones and policies for defining different groups of nodes associated with
different rules and objects distribution on the physical storage. In addition, administrator
can configure replica policy rules which will be automatically managed by the WOS cloud
system. In this perspective, ESD middleware relies on the WOS configuration and policies
for the management of the distribution of the objects among the nodes of the cluster and the
physical mapping of the data on the disks. At higher level, ESD middleware can exploit the
WOS backend functionalities in order to customize the objects distribution.
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7. Summary

This deliverable provides an initial architecture design of the ESD middleware. It applies the
4+1 architecture method that consists of 4 different architectural views accompanied by use
cases as drivers.
In the background, the perspective of data in scientific applications is given, and the dominant
APIs and file formats to describe and manipulate such data are discussed in Chapter 2. The
applications tend to use structured grids and common file formats are NetCDF, HDf5 and
GRIB. Most applications are parallized using MPI which sometimes also influences the data
model of applications. Parallel file systems are the most common storage system at the
moment but object storage is becoming more an more important. Technologies predominantly
used in big data contexts promise to benefit data storage of scientific data.
It follows a listing of functional and non-functional requirements for the middleware (see
Chapter 4). CRUD suppport for data and metadata has to be realized. Stored data needs to
be discoverable based on metadata information that are available, potentially offering different
views onto the data. The architecture has to support heterogeneous architectures and should
be compatible to existing technologies. In addition, the ESDM should be configurable, user-
friendly, reliable and performant.
In the chapter on use cases (Chapter 4), first the most common task in existing climate
and weather workflows are collected. The different stakeholders such as scientists, project
managers and institutions which often provide infrastructure are described. The core systems
such as the supercomputers, storage systems, applications and software libraries are briefly
introduced and characterized by their main failure modes which have to be considered by the
middleware. It follows a high-level perspective for basic use cases (read, write) before several
workflow oriented use cases which would use an ESDM are given. The described use cases
include conventional simualation runs, independent pre/post-processing jobs as well as more
integrated scenarious that implement pipelines, workflows and in situ methods.
The architecture overview in Chapter 5 is driven by the challenges and requirements collected
earlier. A general architecture overview is provided first, the remainder of the document
continues to refine the conceptual data model as well the interface semantics before the
involved components introduced. The conceptual data model describes multi-dimensional
data sets, variables together with their metadata. Besides typical operations to access and
manipulate data asynchronously, the middleware covers notifications allowing to communicate
changes on the system.
In Chapter 6 the core components are described in more detail. A scheduling component
is responsible to accept and delegate incoming requests to the layout component as well as
the different backends. The layout component finds suitable data fragmentation and bases
this decision on a performance model which also reflects the different storage backends. The
storage backends in turn are responsible to store fragments but also to provide performance
estimate that matches the storage system and its configuration. Multiple storage backends
are discussed including POSIX-like systems as well as two solutions for object storage.
The document is not intended to describe all components completely but provides a high-
level overview that is necessary to build a first prototype. During the development, it will be
adjusted to match the prototype and the final version will be delivered with the end of the
project.
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A. Templates

This section describes the templates used for creating the use case descriptions.

A.0.1. System: Template

System Description: A short description of the system/subsystem.

Risks:

• A list of risk factors for the system

• ordered by priority

Subsystems: A brief list of subsystems with a short description.

• Subsystem 1: Really brief description.

• Subsystem 2: Really brief description.

• Subsystem 3: Really brief description.

A.1. Use Cases

A.1.1. UC: Template

This section is the general template for use cases. Sections that do not apply may be dropped.

Actors:

• Which systems are involved?

• What kind of users are doing this? Scientists, Operators, Vendors?

Use-Case Description: A brief description of the scenario. Why is it relevant?
Which subsystems maybe affected? Which objectives matter most?

Priority: High, Middle, Low – Short explanation.. e.g., x% of workload seen

Data/Domain Description: A description and if possible an illustration of the data struc-
ture, for example: How is the domain defined (1d, 2d, 3d, ...)? What kind of grid? Is it a
timeseries? Array of structures vs. structure of Arrays? Mostly input/output? Expected
data volumes?

Architecture diagram

Figure A.1.
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Illustration of the data domain inside the parallel application.

Figure A.2.: Domain Illustration

Activity diagram illustrating the actors and their high-level operations

Figure A.3.: Activity Diagram

Domain Decomposition:

• Node level domain decomposition

• Storage level domain decomposition/data segmentation

Pre-Conditions:

• What needs to be true before a use case starts?

Post-Conditions:

• What should be true after the use case finishes?

Used Use-Cases:

• Are any other use-cases used? List here. / Split use case in case they get to complex

Flow of Events:

1. Component A: Action

2. Component B: Another action.

Exceptions:

• Scenario 1: Brief description.

• Scenario 2: Brief description.

Assumptions: Any assumptions that have been made, besides pre-conditions and post con-
ditions that are notable.

Notes/Issues: Room for notes. Are there known issues?

Sequence diagram showing the interactions of the individual components

Figure A.4.: Sequence Diagram
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Participating objects

Figure A.5.: Participating Objects
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