
D2.2 Compression Concepts

Anastasiia Novikova, Julian Kunkel, Eugen Betke, Armin Schaare

Workpackage: WP2 Massive I/O
Responsible institution: Thomas Dubos
Contributing institutions: Universität Hamburg, RIKEN, IPSL
Date of submission: 2016-12-20a

aChanges: 2017-02-07: A few typos corrected

Contents
1 Relation to the Project 3

2 Related Work 3
2.1 Compression . 3
2.2 Scientific data . 7
2.3 File formats . 7
2.4 Modern File Formats . 10

3 Quantities to Control Accuracy and Realizability 18
3.1 Accuracy of independent points 19
3.2 Accuracy of fields . 20
3.3 Realizability of independent points 20

4 Data Generated by Simulations 20
4.1 Addressing Data . 21
4.2 Quantities not related to data quality 25
4.3 Selection of Quantities . 25

5 Design 25
5.1 Interfacing I/O Middleware 25
5.2 Tools . 26
5.3 C-API . 26
5.4 Compression chains . 30

6 Implementation 32
6.1 Implementation of compression chain. 32
6.2 Integration in HDF5/NetCDF 32
6.3 Extenstion of NetCDF4 Interface 33

7 Summary and Conclusions 35

Disclaimer: This material reflects only the author’s view and the funding agency is not responsible for any use that may be made of

the information it contains

LISTINGS

Listings
1 Listing 1: Example for white noise generation. 6
2 Listing 2: Example NetCDF metadata . 10
1 Signature 1: HDF5 create an array . 11
2 Signature 2: HDF5 read an array . 12
3 Signature 3: HDF5 write an array . 12
3 Listing 3: Sample code for chunking in HDF5. 13
4 Signature 4: HDF5 set filter . 13
5 Signature 5: HDF5 get filters . 14
6 Signature 6: HDF5 get filter . 14
7 Signature 7: NetCDF compression and decompression function. 15
4 Listing 4: Sample code for compression in NetCDF. 16
5 Listing 5: HDF5 dump: Compression disabled . 17
6 Listing 6: HDF5 dump: Compression enabled . 18
7 Listing 7: NetCDF dump: Compression disabled . 18
8 Listing 8: NetCDF dump: Compression enabled . 18
8 Signature 8: SCIL user hints initialization. 26
9 Signature 9: SCIL context initialization. 27
10 Signature 10: SCIL dimension initialization. 27
11 Signature 11: SCIL compression function. 27
12 Signature 12: SCIL decompression function. 28
13 Signature 13: SCIL noise function. 28
14 Signature 14: SCIL validation function. 29
9 Listing 9: SCIL in action. 30
10 Listing 10: Sample code for compression in NetCDF using SCIL. 34

D2.2 Compression Concepts 2/36

2 RELATED WORK

1 Relation to the Project
This report proposes precise definitions of noise characteristics, compression constraints, and tools for generating
and characterizing compression-generated noise. The following text summarizes the project proposal for this
task and deliverable:
The goal of this task is to define a set of quantities that can be used for specification of maximum permissible
data degradation, and thus, defining the variable accuracy. Examples are relative and absolute error (residual),
but there are more quantities that are relevant. The quantities should serve as a basis for:

• Noise level verification, which shows, if the value is below the desired threshold or not, and if it fulfills the
desired constraints.

• Generation of synthetic noise for given characteristics, so that users can simulate the effect of data com-
pression and determine which noise level is acceptable for their purpose.

• Creation of a user-guided API for data storage with lossy compression.

The support of (semi-)automatic computation of optimal values (T2.3) shall relieve the user of this mostly
cumbersome task.

2 Related Work
Over the past years we could observe the tendency, that the climate scientists are creating increasingly large
amounts of data, making the storage of the data to a challenging and expensive task. From the economical
standpoint it becomes more and more reasonable to find a way to store data more efficiently. Especially suited
for this are data compression methods. In an HPC environment the storage is not the only component that can
benefit from compressed data, but other components like network and compute nodes can also do, improving
overall application runtimes.
Before we continue our discussion about compression, we take a look how scientists store the data on HPCs.
Here, a particularly important role is played by I/O libraries, or file formats, respectively.

2.1 Compression
Data compression or bit-rate reduction involves encoding information using fewer bits than the original repre-
sentation [MMM12]. Reduced storage space consumption is only one advantage of data compression, but it can
also reduce network load and speedup data transmission, especially in an HPC environment. We distinguish
between three states of data: original, encoded (compressed), and decoded (decompressed). These states are
described in detail later.
Compression techniques are divided in two groups: lossless and lossy. In the lossless compression no information
is lost, i.e., the original data can be reconstructed completely. Lossy algorithms compress stronger by reducing
the detail level, e.g., by approximating the data or by supressing unnecessary information. To measure how
well a compression algorithm can compresses data we take the ratio of the number of bits required to represent
the data before compression to the number of bits required after. It is called compression ratio.

Compression Ratio =
Data SizeOriginal

Data SizeCompressed
(1)

For example, if the size of an image is 128x128 pixels, that requires 16384 bytes, and its compressed size is 8192
bytes. Thus, compression ratio of algorithm will be 2.
The compression tools and algorithms can be classified into the three groups.

1. Algorithms
Compression algorithms and tools that allow to set certain accuracy or performance levels.

2. Tools,
such as noise generation tool, which allows to add noise to the data.

3. HPC-Compression
Compression in high-performance computing workflows.

D2.2 Compression Concepts 3/36

2 RELATED WORK

2.1.1 Algorithms

GZIP (GNU ZIP) [Gzi] is an example of a lossless compression scheme that is widely used on personal
computers. It is not the fastest, but provides a good trade-off between speed and compression ratio. GZIP
compression algorithm is based on the DEFLATE algorithm, which is a variation of the lossless LZ77 (Lempel-Ziv
77) algorithm. LZ77 is the first of the Lempel-Ziv compresion algorithms. It has a dictionary-based compressor.
The dictionary consists of encoded sequences of the data. The compressor examines the input data through a
sliding window, which consists of a search sequence with a recently encoded data and a look-ahead sequence
with a data to be encoded, and replaces the second occurrence of the sequence by a pointer to the previous one.
The basic idea of this algorithm family is shown in the Figure 1 by decoding the triple < 5, 3, C(r) >. The first
value of this triple is the offset (distance to the begin of match) from the end of data, the second is the lenght
of the match, and the last one is the symbol of the end of match. This window is limited by a small sequences
of data. The longest match is limited by the length of the look-ahead sequence. Longer matches have to be
truncated at a certain arbitrary length. If compression ratio is more important than speed, deflation algorithm
defers the selection of matches with a lazy evaluation mechanism and attempts a complete second search even
if the first match is already long enough. For the fastest compression modes, new sequences are inserted in the
hash table only when no match was found, or when the match is not too long. This saves time since there are
both fewer insertions and fewer searches.

c a a a b c d e f
Initializing

c a a a b

Move back 5

c d e f

c a a a b c d e f b
Copy first

c a a a b c d e f b c
Copy second

c a a a b c d e f b c d
Copy third

c a a a b c d e f b c d r

C(r)

Figure 1: LZ77 encoding

ZFP [Fpc] was designed for compression of floating point data only, but the current version can be also
applied to integer data. The algorithm achieves high compression ratios by lossy compression. One of its main
features is error-bounded compression, where the maximum permissible relative error can be defined by some
epsilon value. ZFP is similar to JPEG compression principle, because it encodes the data, that is very close to
zero, and thus uses similarity of the neighboring data points. ZFP is a very fast compressor and decompressor
for floating-point data that achieves upto 2GB/s throughput. In its current release number of dimensions is
limited by 3, that is mostly not enough for the climate scientific data.

FPZIP (Floating Point ZIP) [LI06] was primarily designed for lossless compression, but it also supports
lossy compression. For lossy compression, ZFP compressor often outperforms FPZIP. This algorithm works
as follows. Input data is traversed in some coherent order, e.g. row-by-row, and each visited data value is
first predicted from a subset of the already encoded data, i.e. the data available to the decompressor. The
predicted and actual values are transformed to an integer representation during which the least significant bits
are optionally truncated if lossy compression is desired. Then, residuals are computed and partitioned into
entropy codes and raw bits, which are transmitted by the fast entropy coder. Its compression sheme provides
high compression rates whithout losts in computational efficiency and delivers high throughput.

D2.2 Compression Concepts 4/36

2 RELATED WORK

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

ψ
M
(x
)

(a) Morlet

ψM (x) = e−
x2

2 cos (5x)

−10 −5 0 5 10
−0.5

0

0.5

1

x

ψ
X
(x
)

(b) Mexican hat (here σ = 1.5)

ψX(x) = 2
√
3σπ

1
4
(1− x2

σ2)e
−x2
2σ2

0 0.5 1
−1

−0.5

0

0.5

1

x

ψ
H
(x
)

(c) Haar wavelet

ψH(x) =

1 x ∈ [0, 1

2
)

−1 x ∈ [1
2
, 0)

0 other

Figure 2: Wavelets

LZ4fast [Lz4] focuses, as an adaption to the Lempel-Ziv algorithm, developed by Yann Collet (2011), on
compression and decompression speed while forfeiting compression ratios.

SZ [DC15] is a novel and effective HPC data compression method with primary focus on multi-dimensional
floating-point arrays compression. Given a d-dimensional floating-point array, the overall compression procedure
can be split into the three steps: (1) conversion of a D-dimensional floating-point array to a 1-dimensional
array, (2) compression of the 1-D array by using an array of bits to record the data points whether they can be
predicted by the dynamic bestfit curve-fitting models, (3) and compression the unpredictable data by analyzing
their binary representations. Experiments show that the compression ratio of a SZ-compressor ranges between
3.3 - 436, which is higher than the second-best solution ZFP by at least 2x and an order of magnitude for most
cases. The compression time of SZ is comparable to other solutions, while the decompression time is less than
the second best one by 50%-90%. The extreme-scale experiments show that the compression ratio of SZ exceeds
that of ZFP by 80%.

WAVELET [Wava] is a C library which contains some utilities for computations involving wavelets. Wavelet
is a function ψ, “waving” above and below x-axis. This function approximate with polynoms and trigonometric
polynoms (Fourier analysis). Each function can be transformed and recovered with Fourier transformation. The
transformed function ψ̂ is detailed with frequency parameter ω.
The most important properties of wavelets are: ∫ ∞

−∞
ψ(x) dx = 0 (2)

ψ̂(0) = 0 (3)∫ ∞
−∞

|ψ̂(x)|2

|ω|
dω <∞ (4)

There are many kinds of wavelets. The simplest one is the Haar wavelet (see Figure 2c): It is not continuous
and therefore provides a very poor frequency localization.
For the compression, data are coded by wavelet coefficients. Compression using a wavelet transform can be either
lossless or lossy. Data will be decomposed with filter banks. The outputs of the filter banks are downsampled,
quantized and encoded. The decoder decodes the coded representations, upsamples, and recomposes the signal
using a synthesis filter bank. Lossy compression can be done with thresholding by setting small values to 0.
Wavelets and wavelet packets can be grown overcomplete (each overcomplete transform is invertible, etc.). The
wavelet compression library is portable and can be easily modified by adding new filters.

Wavetrisk [Wavb] Wavetrisk implements a dynamically-adaptive numerical method solving the shallow-
water equations (RSWE) on a hierarchy of icosahedral spherical meshes [AKD15]. It brings together a previously
developed (non-adaptive) mimetic finite volume / finite difference method for the RSW and spherical wavelet
transforms for scalar and vectors that preserve the mimetic properties. Adaptivity especially relies on the ability
of wavelets to introduce a controlled amount of error when ignoring wavelet coefficients smaller than a certain
threshold. Although Wavetrisk was not initially designed with data compression in mind, building blocks of

D2.2 Compression Concepts 5/36

2 RELATED WORK

Wavetrisk could possibly be reused or re-implemented in order to devise lossy compression schemes tailored for
data associated to icosahedral meshes.

Abstol [You10] algorithm was developed alongside SCIL at the Universität Hamburg. In the respective
paper it is stated, that Abstol has a uniform scalar quantization method at its core. It is further described,
that by separating the interval between the minimum and maximum value of the data into uniform regions,
specified by the provided absolute error tolerance, a number of distinct bins is obtained in which each value
resides. Each bin is then encoded by its index and used to recreate the original value in a lossy manner [SKri].

Sigbits [SKri] method, like Abstol, was also devised with the implementation of SCIL. In the original paper,
it is explained, that Sigbits makes use of properties of the data values float representation and the provided
relative error tolerance to generalize over all values. For example, if all values are positive, the sign bit of each
value can be dropped and instead only be stored once, in the header of the compressed buffer. Furthermore,
Sigbits quantizes the values’ exponents and drops non-significant bits in the mantissa as specified by the provided
relative error tolerance.

2.1.2 Tools

CNOISE [Sto11] is a C library for generating noise sequences based on 1/fα power spectral density, where
α > 0 and f denotes the frequency. This includes white noise (α = 0), pink noise (α = 1) and red or Brownian
noise (α = 2), as well as noise for values of α between 0 and 2, by Miroslav Stoyanov [MGB11]. CNOISE is
partially based on an algorithm by Kasdin [Kas]. Kasdin’s implementation uses a number of functions from
the Numerical Recipes library [Nrl] (e.g. FOUR1, FREE_VECTOR, GASDEV, RAN1, REALFT, VECTOR)
which is unfortunately a proprietary library whose components cannot be freely distributed. Therefore, the
implementation of cnoise relies on the open source library “GSL” (the GNU Scientific Library) [Gnu].
Further features of CNOISE:

• Double precision arithmetic

• In the GSL Fast Fourier Transform functions the input parameter are not restricted to be a multiple of 2.

Noise is a general term from signal processing for some modifications that a signal may suffer during some
operations. Noise can be classified by its statistical properties (sometimes called the “color” of the noise) and
by how it modifies the intended signal. The color of noise is based on visible electromagnetic spectrum of
signal. We are focused on the additive noise, that can be added to the data, that meets the climate scientists’
requirements.
Colors of noise (see the Figure 3: sample time series of white (top), pink (middle), and brown (bottom) noise):

• white
In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially
uncorrelated random variables with zero mean and finite variance; a single realization of white noise is
a random shock. Depending on the context, one may also require that the samples be independent and
have identical probability distribution. The samples of a white noise signal may be sequential in time,
or arranged along one or more spatial dimensions. A random signal is considered "white noise" if it is
observed to have a flat spectrum over the range of frequencies that is relevant to the context [Wikb].

Listing 1: Example for white noise generation.

1 value[time_point] = 2 * ((rand()/((double)RAND_MAX)) - 0.5)

• brown
Brown noise can be produced by integrating white noise. That is, whereas (digital) white noise can be
produced by randomly choosing each sample independently, Brown noise can be produced by adding a
random offset to each sample to obtain the next one [Wikb].

• pink
One parameter of noise, the peak versus average energy contents, or crest factor, is important for testing
purposes because the signal power is a direct function of the crest factor. Various cres factors of pink
noise can be used in simulations of various levels of dynamic range compression. On some digital pink
noise generators the crest factor can be specified. White noise will be stronger than pink noise (flicker
noise) above some corner frequency. Corner frequency is the frequency either above or below which the

D2.2 Compression Concepts 6/36

2 RELATED WORK

power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of
the power in the passband [Wikb].

0 100 200 300 400 500 600 700 800 900 1,000
−4
−2
0

2

Sample

(a) White noise, α = 0

0 100 200 300 400 500 600 700 800 900 1,000

−5

0

5

Sample

(b) Pink noise, α = 1

0 100 200 300 400 500 600 700 800 900 1,000

0

10

20

Sample

(c) Brown noise, α = 2

Figure 3: Noise generated by CNOISE.

2.2 Scientific data
First of all we support climate scientific data. With the progress of computers and increase of observation data,
numerical models were developed. A numerical climate model is a mathematical representation of the earth’s
climate system, that includes the atmosphere, ocean, cryosphere, etc. The model consists of a set of grids with
variables such as surface pressure, winds, temperature and humidity. It is needed to predict future evolution of
the earth’s weather and climate. A numerical model can be encoded in a programming language resulting in
an application for simulation the behavior using the model. Grids cover the area of interest.

Many models have the ability to nest finer grids within a coarse grid resulting in a nested grid with much higher
resolution. The resolution of a model also depends on the area. Global climate models typically have coarse
resolutions and are necessary for long-range forecasts. Regional models with limited area coverage have finer
resolution and are used for short-range forecasts. They can be run closer to real time.
The first grid was developed by Lewis Fry Richardson, with idea of forecasting weather by numerical process
using physically based models to represent a grid cell as the base of a vertical column of the atmosphere. Each
vertical column was then divided into several layers Figure 4. A result was of short-period oscillations called
gravity waves that created “noise” in the observed data set.

The effort reached by Richardson is used for future development of grids. For example, on the Figure 5 are
shown three shapes of grid: rectangular, triangular and hexagonal.

2.3 File formats
Generally, parallel scientific applications are designed in such a way, they can solve complicated problems faster
when running on a large number of compute nodes. This is achieved by splitting a global problem into small

D2.2 Compression Concepts 7/36

2 RELATED WORK

Figure 4: Grid used by Richardson

Figure 5: Types of grids

pieces and distributing it over the compute nodes; this is called domain decomposition. After each node has
computed a local solution, they can be aggregated to one global solution. This approach can decrease time-to-
solution considerably.
I/O makes this picture more complicated, especially when data is stored in one single file and is accessed by
several processes simultaneously. In this case, problems can occur, when several processes access the same file
region, e.g. two processes can overwrite the data of each other, or inconsistencies can occur when one process
reads, while another writes. Portability is another issue: When transferring data from one platform to another,
the contained information should still be accessible and identical. The purpose of I/O libraries is to hide the
complexity from scientists, allowing them to concentrate on their research.
Some common file formats are listed in the Table 1. All of these formats are portable (machine independent)
and self-describing. Self-describing means, that files can be examined and read by the appropriate software
without the knowledge about the structural details of the file. The files may include additional information
about the data, called “metadata”. Often, it is textual information about each variable’s contents and units
(e.g.,"humidity" and "g/kg") or numerical information describing the coordinates (e.g., time, level, latitude,
longitude) that apply to the variables in the file.
GRIB is a record format, NetCDF/HDF/HDF-EOS formats are file formats. It is the difference. In contrast
to record format, file formats are bound to format specific rules. For example, all variable names in NetCDF
must be unique. In HDF, although, variables with the same name are allowed, they must have different paths.
No such rules exist for GRIB. It is just a collection of records (datasets), which can be appended to the file in
any order.
GRIB-1 record (aka, ’message’) contains information about two horizontal dimensions (e.g., latitude and longi-
tude) for one time and one level. GRIB-2 allows each record to contain multiple grids and levels for each time.
However, there are no rules dictating the order of the collection of GRIB records (e.g, records can be in random
chronological order) [Fil].

Name Fullname Version Developer
GRIB1 GRIdded Binary 1 World Meteorological Organization
GRIB2 GRIdded Binary 2 World Meteorological Organization
NetCDF3 Network Common Data Form 3.x Unidata (UCAR/NCAR)
NetCDF4 Network Common Data Format 4.x Unidata (UCAR/NCAR
HDF4 Hierarchical Data Format 4.x NCSA/NASA
HDF4-EOS2 HDF4-Earth Obseving System 2
HDF5 Hierarchical Data Format 5.x NCSA/NASA
HDF5-EOS5 HDF5-Earth Obseving System 5

Table 1: Parallel data formats

D2.2 Compression Concepts 8/36

2 RELATED WORK

Finally, a file format without parallel I/O support, but still worth to mention, is CSV (comma-separated values).
It is special due to its simplicity, broad acceptance and support by a wide range of applications. The data is
stored as plain text in a table. Each line of the file is a data record. Each record consists of one or more fields,
that are separated by commas (hence the name). The CSV file format is not standardized. There are many
implementations that support additional features, e.g., other separators and column names.

2.3.1 Example Metadata

Listing 2 gives an example for scientific metadata stored in a NetCDF file. Firstly, between Line 1 and 4, a few
dimensions of the multidimensional data are defined. Here there are longitude, latitude with a fixed size and
time with a variable size that allows to be extended (appending from a model). Then different variables are
defined on one or multiple of the dimensions. The longitude variable provides a measure in “degreees east” and
is indexed with the longitude dimension; in that case the variable longitude is an 1D array that contains values
for an index between 0-479. It is allowed to define attributes on variables, this scientific metadata can define
the semantics of the data and provide information about the data provenance. In our example, the unit for
longitude is defined in Line 7. Multidimensional variables such as sund (Line 45) are defined on an 2D array
of values for the longitude and latitude over various timesteps. The numeric values contain a scale factor and
offset that has to be applied when accessing the data; since the data is here stored as short values, it should
be converted to floating point data in the application. The _FillValue indicates a default value for missing
data points.
Finally, global attributes such as indicated in Line 54 ff. describe that this file is written with the NetCDF-CF
schema and its history describes how the data has been derived / extracted from original data.

D2.2 Compression Concepts 9/36

2 RELATED WORK

Listing 2: Example NetCDF metadata

dimensions:
longitude = 480 ;
latitude = 241 ;
time = UNLIMITED ; // (1096 currently)

variables:
float longitude(longitude) ;

longitude:units = "degrees_east" ;
longitude:long_name = "longitude" ;

float latitude(latitude) ;
latitude:units = "degrees_north" ;
latitude:long_name = "latitude" ;

int time(time) ;
time:units = "hours since 1900-01-01 00:00:0.0" ;
time:long_name = "time" ;
time:calendar = "gregorian" ;

short sf(time, latitude, longitude) ;
sf:scale_factor = 7.3764124573405e-07 ;
sf:add_offset = 0.0241695530510217 ;
sf:_FillValue = -32767s ;
sf:missing_value = -32767s ;
sf:units = "m of water equivalent" ;
sf:long_name = "Snowfall" ;
sf:standard_name = "lwe_thickness_of_snowfall_amount" ;

short u10(time, latitude, longitude) ;
u10:scale_factor = 0.00119632889000476 ;
u10:add_offset = -3.29942438209637 ;
u10:_FillValue = -32767s ;
u10:missing_value = -32767s ;
u10:units = "m s**-1" ;
u10:long_name = "10 metre U wind component" ;

short v10(time, latitude, longitude) ;
v10:scale_factor = 0.00106014321386744 ;
v10:add_offset = 0.829670123705566 ;
v10:_FillValue = -32767s ;
v10:missing_value = -32767s ;
v10:units = "m s**-1" ;
v10:long_name = "10 metre V wind component" ;

short t2m(time, latitude, longitude) ;
t2m:scale_factor = 0.00203513170666401 ;
t2m:add_offset = 257.975148205631 ;
t2m:_FillValue = -32767s ;
t2m:missing_value = -32767s ;
t2m:units = "K" ;
t2m:long_name = "2 metre temperature" ;

short sund(time, latitude, longitude) ;
sund:scale_factor = 0.659209863732776 ;
sund:add_offset = 21599.6703950681 ;
sund:_FillValue = -32767s ;
sund:missing_value = -32767s ;
sund:units = "s" ;
sund:long_name = "Sunshine duration" ;

// global attributes:
:Conventions = "CF-1.0" ;
:history = "2015-06-03 08:02:17 GMT by grib_to_netcdf-1.13.1:

↪→ grib_to_netcdf /data/data04/scratch/netcdf-atls14-
↪→ a562cefde8a29a7288fa0b8b7f9413f7-lFD4z9.target -o /data/data04/
↪→ scratch/netcdf-atls14-a562cefde8a29a7288fa0b8b7f9413f7-CyGl1B.nc
↪→ -utime" ;

}

2.4 Modern File Formats
In modern science, especially, in data intensive research areas like like climatology, meteorology and oceanog-
raphy, the I/O libraries must fulfulls a number of requirements to ensure, on one hand, convienient data access
for scientists, and on the other hand, performant and efficient usage of HPC. NetCDF4 with Climate Forecast

D2.2 Compression Concepts 10/36

2 RELATED WORK

(CF) metadata and GRIB evolved to the de-facto standard formats for convienient data access for the scientists
in the domain of NWP and climate.
For convenient data access, modern file formats provide a set of features. For example, metadata can be used
to assign names to variables, set units of measure, label dimensions, and provide other useful information.
The portability allows data movement between different possibly incompatible platforms, which simplifies the
exchange of data and facilitates communication between scientists. The ability to grow and shrink datasets,
add new datasets and access small data ranges within datasets simplifies the handling of data a lot. The shared
file allows to keep the data in same file. Unfortunately, the last feature conflicts with performance and efficient
usage of the state-of-art HPC. The files, which are accessed simultaneously by several processes, cause a lot of
syncronisation overhead which slows down the I/O performance. Synchronization is necessary to keep the data
consistent.
The rapid development of computational power and storage capacity, and slow development of network band-
width and I/O performance in the last years resulted in imbalanced HPC systems. The application use the
increased computational are able to process more data. More data, in turn, requires more costly storage space,
higher network bandwidth and sufficient I/O performance on storage nodes. But due to imbalance, the net-
work and I/O performance are the main bottlenecks. The idea is, to use a part of computational power for
compression, improving the overall balance.
Before considering a compression method for HPC, it is a good idea to take a look at the realization of parallel
I/O in modern scientific applications. Many of them use the NetCDF4 file format, which, in turn, uses HDF5
under the hood.

HDF (Hierarchical Data Format) is a technology suite that includes several specifications and tools for
management of extremely large and complex data collections. In particular, it describes a data model for
representation of complex data objects and metadata, specifies the interfaces for C, C++, Fortran 90 and Java,
and defines a portable file format. From the beginning, the HDF5 was designed with high scalability in mind.
It should be supported by a wide range of devices, from home computer to large-scale HPC. One particulary
pleasant characteristic for the latter is that the filesize is not restricted by the standard, but by the current
HDF5 implementation (32ExaByte). If required, the maximum value can be easily extended. HDF5 has a
relatively long list of elaborated and powerful features, but it is not our intention to discuss them all in detail.
Our object of interest is the compression support and related features.
Note that large parts of the following description has been taken from the official HDF5 documentation1.

Compression in HDF5 Compression in HDF5 requires chunking. Chunking is the way to store a dataset,
wich is characterised as size-fixed and N-dimensional, partitioned into chunks. The dataset is represented as
an array upto 32 dimensions and consists of a set of data elements and its description (metadata). It can be
stored in the HDF5-file only as 1-dimensional array. A dataset is stored in a file contains header and data array.
The header is needed for interpretation of the data portion and metadata, and consists of name of the object,
number of its dimensions, data type, information about data is stored and other provided information. On the
Signature 1 is shown a function to create a dataset.

Signature 1: HDF5 create an array

hid_t H5Dcreate(
hid_t loc_id,
const char
*name,
hid_t type_id,
hid_t space_id,
hid_t dcpl_id)

This function creates an empty dataset at the specified location and returns a dataset identifier. It creates
a data set with a name name, in the file or in the group specified by the identifier loc_id. The length of
a dataset name is not limited. name can be a relative path based at loc_id or an absolute path from the
root of the file. The dataset’s datatype and dataspace are specified by type_id and space_id. These are
the datatype and dataspace of the dataset as it will exist in the file, which may differ from the datatype
and dataspace in application memory. H5Dcreate will return an error if a link with the name specified in
name already exists at the location specified in loc_id. dcpl_id is an H5P_DATASET_CREATE property
list created with H5Pcreate and initialized with various property list functions described in HDF5 manual
[Hdfa].

1https://support.hdfgroup.org/HDF5/doc/

D2.2 Compression Concepts 11/36

https://support.hdfgroup.org/HDF5/doc/

2 RELATED WORK

Chunked dataset can be splitted into multiple chunks, which are separetely stored in the file, and then can be
also separately read Signature 2 and written Signature 3.

Signature 2: HDF5 read an array

herr_t H5Dread(
hid_t dataset_id,
hid_t mem_type_id,
hid_t mem_space_id,
hid_t file_space_id,
hid_t xfer_plist_id,
void * buf)

H5Dread reads a (partial) dataset, specified by its identifier dataset_id, from the file into an application
memory buffer buf. Data transfer properties are defined by the argument xfer_plist_id. The memory
datatype of the (partial) dataset is identified by the identifier mem_type_id. The part of the dataset to
read is defined by mem_space_id and file_space_id. file_space_id is used to specify only the
selection within the file dataset’s dataspace. Any dataspace specified in file_space_id is ignored by the
library and the dataset’s dataspace is always used. mem_space_id is used to specify both the memory
dataspace and the selection within that dataspace. If raw data storage space has not been allocated for the
dataset and a fill value has been defined, the returned buffer buf is filled with the fill value.

Signature 3: HDF5 write an array

herr_t H5Dwrite(
hid_t dataset_id,
hid_t mem_type_id,
hid_t mem_space_id,
hid_t file_space_id,
hid_t xfer_plist_id,
const void * buf)

This function writes raw data from a buffer to a dataset.

To use chunking a single call have to be done before the dataset is created. In this way we can switch between
using chunked and contiguous datasets (see Listing 3).

D2.2 Compression Concepts 12/36

2 RELATED WORK

Listing 3: Sample code for chunking in HDF5.

1 int main(void) {
2 hid_t file_id, dset_id, space_id, dcpl_id;
3 hsize_t chunk_dims[2] = {2, 2};
4 hsize_t dset_dims[2] = {8, 8};
5 int buffer[8][8];
6

7 //Create the file
8 file_id = H5Fcreate(file.h5, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
9

10 // Create a property list
11 dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
12

13 // Set the property list to use chunking
14 H5Pset_chunk(dcpl_id, 2, chunk_dims);
15

16 // Create the dataspace
17 pace_id = H5Screate_simple(2, dset_dims, NULL);
18

19 // Create the chunked dataset
20 dset_id = H5Dcreate(file, dataset, H5T_NATIVE_INT, space_id, dcpl_id,

↪→ H5P_DEFAULT);
21

22 // Write to the dataset
23 buffer = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

↪→ H5P_DEFAULT, buffer);
24

25 // Close processes
26 H5Dclose(dset_id);
27 H5Sclose(space_id);
28 H5Pclose(dcpl_id);
29 H5Fclose(file_id);
30 return 0;
31 }

Data chunks can pass through user-defined filters on the way to or from disk. The filters operate on chunks of
an H5D_CHUNKED dataset can be arranged in a pipeline so output of one filter becomes the input of the next
filter.
Each filter has a two-byte identification number (type H5Z_filter_t) allocated by NCSA and can also be
passed application-defined integer resources to control its behavior. Each filter also has an optional ASCII
comment string. Two types of filters can be applied to raw data I/O: permanent filters and transient filters.
The permanent filter pipeline is defned when the dataset is created while the transient pipeline is defined for
each I/O operation. During an H5Dwrite() the transient filters are applied first in the order defined and
then the permanent filters are applied in the order defined. For an H5Dread() the opposite order is used:
permanent filters in reverse order, then transient filters in reverse order. An H5Dread() must result in the
same amount of data for a chunk as the original H5Dwrite().
The permanent filter pipeline is defined by calling H5Pset_filter() for a dataset creation property list while
the transient filter pipeline is defined by calling that function for a dataset transfer property list.

Signature 4: HDF5 set filter

herr_t H5Pset_filter (
hid_t plist,
H5Z_filter_t filter,
unsigned int flags,
size_t cd_nelmts,
const unsigned int cd_values[]);

This function adds the specified filter and corresponding properties to the end of the transient or perma-
nent output filter pipeline (depending on whether plist is a dataset creation or dataset transfer property
list). The flags argument specifies certain general properties of the filter and is documented below. The
cd_values is an array of cd_nelmts integers which are auxiliary data for the filter. The integer values
will be stored in the dataset object header as part of the filter information.

D2.2 Compression Concepts 13/36

2 RELATED WORK

Signature 5: HDF5 get filters

int H5Pget_nfilters (hid_t plist);

This function returns the number of filters defined in the permanent or transient filter pipeline depending
on whether plist is a dataset creation or dataset transfer property list. In each pipeline the filters are
numbered from 0 through N-1 where N is the value returned by this function. During output to the file the
filters of a pipeline are applied in increasing order (the inverse is true for input). Zero is returned if there
are no filters in the pipeline and a negative value is returned for errors.

Signature 6: HDF5 get filter

H5Z_filter_t H5Pget_filter (
hid_t plist,
int filter_number,
unsigned int *flags,
size_t *cd_nelmts,
unsigned int *cd_values,
size_t namelen,
char name[]);

This is the query counterpart of H5Pset_filter() and returns information about a particular filter number
in a permanent or transient pipeline depending on whether plist is a dataset creation or dataset transfer
property list. On input, cd_nelmts indicates the number of entries in the cd_values array allocated by
the caller while on exit it contains the number of values defined by the filter. The filter_number should
be a value between zero and N-1 as described for H5Pgetn_filters() and the function will return failure
(a negative value) if the filter number is out of range. If name is a pointer to an array of at least namelen
bytes then the filter name will be copied into that array. The name will be null terminated if the namelen
is large enough. The filter name returned will be the name appearing in the file or else the name registered
for the filter or else an empty string.

Each filter is bidirectional, handling both input and output to the file, and a flag is passed to the filter to
indicate the direction. In either case the filter reads a chunk of data from a buffer, usually performs some sort
of transformation on the data, places the result in the same or new buffer, and returns the buffer pointer and
size to the caller. If something goes wrong the filter should return zero to indicate a failure. [Hdfb]

NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-oriented scientific data.
NetCDF developement started in the year 1988 with the 32-bit file format, called “NetCDF classic”, which
restricts the variable size to 2GiB. In 2004 NetCDF classic was extended to NetCDF 64-bit version, which
allows variable sizes upto 4GiB. Although, both legacy file formats are outdated, they are still in use by a
number of legacy applications and therefore still supported by the NetCDF Group. To keep up with techno-
logical progress, the next upgrade came very soon, in the year 2008. It was the starting point of the general
NetCDF4 and the NetCDF4 Classic Model formats. The general NetCDF4 version is a feature rich format with
a more complex interface. The NetCDF Classic Model benefits of the most important HDF5 features only (like
compression), but provides a simple interface.
NetCDF4 inherited a large set of features from HDF5. They were used to implement the interface, provide
extended functionality, and achieve high performance. For example NetCDF variables are represented by HDF5
datasets, and dimensions are HDF5 datasets with a special attribute. Dimensions are attached to variables by
HDF5 references. NetCDF benefits by a number of HDF5 features like chunking, compression, and datatypes.
Many powerful features are not used like virtual datasets. There is also a lot auf functionaly that is used
indirectly, e.g., caching, metadata.
A comparisson of features related to compression is shown in the Table 2.

2.4.0.1 Compression in NetCDF4 With the NetCDF functions nc_def_var_deflate and nc_inq_var_deflate
↪→ the compression parameters can be set and retrieved, respectively. They are shown and explained in the
Signature 7.

2The NetCDF filesize is not limited by the standard, but by HDF5 library implementation.
3The HDF5 filesize is not limited by the standard, but by the current HDF5 implementation (max. 32EiB).
4Variables in NetCDF.
5In NetCDF Classic last variable can exceed the 2GiB size limitation.

D2.2 Compression Concepts 14/36

2 RELATED WORK

Feature NetCDF HDF5
Classic 64-bit NetCDF4

compresion no no yes yes
max. file size 8EiB 8EiB unlimited2 unlimited3

max. dataset4 size 2GiB5 4GiB unlimited unlimited
signed integer 8-bit

16-bit
32-bit

8-bit
16-bit
32-bit

8-bit
16-bit
32-bit
64-bit

8-bit
16-bit
32-bit
64-bit

unsigned integer 8-bit
16-bit
32-bit
64-bit

8-bit
16-bit
32-bit
64-bit

floating point 32-bit
64-bit

32-bit
64-bit

32-bit
64-bit

32-bit
64-bit
+ prog. lang. specific
+ hardware specific

compound no no yes yes
chunking yes yes
other data types time

references
string no no yes yes
tree depth 1 1 unlimited unlimited
unlimited dimensions yes (only 1) yes (only 1) yes yes

Table 2: Comparisson of NetCDF and HDF5

Signature 7: NetCDF compression and decompression function.

EXTERNL int nc_def_var_deflate(
int ncid,
int varid,
int shuffle,
int deflate,
int deflate_level);

EXTERNL int nc_inq_var_deflate(
int ncid,
int varid,
int *shufflep,
int *deflatep,
int *deflate_levelp);

ncid Identifier of NetCDF file, returned by nc_create or nc_open, or of a NetCDF
group, returned by nc_def_grp.

varid Identifier of a NetCDF variable, returned by nc_def_var.
shuffle Turns on the shuffle filter, if non-zero. The shuffle filter can assist with the

compression of integer data by changing the byte order in the data stream.
deflate Turns on compression, if non-zero. Set this argument to a non-zero value and set

the deflate_level argument to the desired compression level.
deflate_level Numeric value between 0 and 9 specifying the amount of compression, where 0 is

no compression and 9 is the most compression.

2.4.0.2 NetCDF4 Example The code (Listing 4) creates a 2-dimensional variable and writes the data to
the “data.nc” file using compression level 9. First, in Line 11 we declare a 2-D integer array and fill it with
values in Line 15 using the scheme d[x][y] = x + y. This should create many equal data sequences and
enable the deflate algorithm to compress the data with a high compression ratio. Then, in Line 21 and Line 22
we define a NetCDF variable and enable compression. Finally, in Line 24 NetCDF writes the data to the file,
compressing the data on the fly.

D2.2 Compression Concepts 15/36

2 RELATED WORK

CPU Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
RAM 256GB
Network InfiniBand FDR
File system Lustre 2.7.14
Operation System Red Hat Enterprise Linux Server release 6.8 (Santiago)
Kernel 2.6.32-642.3.1.el6.x86_64

Table 3: Benchmark environment

Listing 4: Sample code for compression in NetCDF.

1 #include <stdlib.h>
2 #include <netcdf.h>
3

4 #define NDIMS 2
5 #define NX 100
6 #define NY 100
7

8 int main(int argc, char** argv) {
9 int ncid, x_dimid, y_dimid, varid;

10 int dimids[NDIMS];
11 int d[NX][NY];
12 int x, y, retval;
13 for (x = 0; x < NX; x++)
14 for (y = 0; y < NY; y++)
15 d[x][y] = x + y;
16 nc_create("data.nc", NC_NETCDF4 | NC_CLOBBER, &ncid);
17 nc_def_dim(ncid, "x", NX, &x_dimid);
18 nc_def_dim(ncid, "y", NY, &y_dimid);
19 dimids[0] = x_dimid;
20 dimids[1] = y_dimid;
21 nc_def_var(ncid, "data", NC_INT, NDIMS, dimids, &varid);
22 nc_def_var_deflate(ncid, varid, 0, 1, 9);
23 nc_enddef(ncid);
24 nc_put_var_int(ncid, varid, &d[0][0]);
25

26 nc_close(ncid);
27 return 0;
28 }

For the benchmark, we change the code slightly, especially, to be able to allocate large memory chunks and
run the benchmark with different parameters, to see how compression ratio and application runtime change,
when increasing comression level. The experiment was conducted on Mistral [Mis], the HPC of DKRZ. The
relevant characteristics of the benchmark environment are listed in the Table 3 and the results are show in the
Figure 6. Obviously, the data generated by the benchmark is particulary suitable for compression. With the
first compression level we achieve a compression ratio of 13, and with compression level 4 the compression ratio
was 143. After compression level 4 there are no significant improvements. Compared to compression ratio, the
benchmark runtime increases slightly with increasing compression level. From these results, following can be
deduced: by using several processes we expect to decrease the overall application runtime until the network
bandwidth or I/O performance of the storage nodes is saturated.
The file, created by NetCDF4 can be examined by the NetCDF tools, as well as by the HDF5 tools. In
Listings 5 to 8 we compared both the output of HDF5 and NetCDF, and compressed and non-compressed files.
The complete output of HDF5 was quite verbose, too large to be shown in this report. Therefore, we look only
at the dataset and skip dimensions description. In the Storage_LAYOUT we can, that chunking feature was
automatically enabled.
[raster columns=2,enhanced,equal height group=C]

D2.2 Compression Concepts 16/36

2 RELATED WORK

0 1 2 3 4 5 6 7 8 9

102

103

104

Compression level

D
at
as
iz
e
in

M
B

(a) Compressed datasize

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Compression level

T
im

e
in

Se
co
nd

s

(b) Runtime

Figure 6: NetCDF compression of a 50000x50000-array of integer values (9.3GiB) with one single process.

Listing 5: HDF5 dump: Compression disabled

$ h5dump -p -A -d data data.nc
HDF5 "data.nc" {
DATASET "data" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (100, 100) / (100, 100) }
STORAGE_LAYOUT {

CONTIGUOUS
SIZE 40000
OFFSET 6192

}
FILTERS {

NONE
}
FILLVALUE {

FILL_TIME H5D_FILL_TIME_IFSET
VALUE -2147483647

}
ALLOCATION_TIME {

H5D_ALLOC_TIME_LATE
}
ATTRIBUTE "DIMENSION_LIST" {

DATATYPE H5T_VLEN { H5T_REFERENCE { H5T_STD_REF_OBJECT }}
DATASPACE SIMPLE { (2) / (2) }
DATA {
(0): (DATASET 239 /x), (DATASET 514 /y)
}

}
}
}

D2.2 Compression Concepts 17/36

3 QUANTITIES TO CONTROL ACCURACY AND REALIZABILITY

Listing 6: HDF5 dump: Compression enabled

$ h5dump -p -A -d data data.nc
HDF5 "data.nc" {
DATASET "data" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (100, 100) / (100, 100) }
STORAGE_LAYOUT {

CHUNKED (100, 100)
SIZE 638 (62.696:1 COMPRESSION)

}
FILTERS {

COMPRESSION DEFLATE { LEVEL 9 }
}
FILLVALUE {

FILL_TIME H5D_FILL_TIME_IFSET
VALUE -2147483647

}
ALLOCATION_TIME {

H5D_ALLOC_TIME_INCR
}
ATTRIBUTE "DIMENSION_LIST" {

DATATYPE H5T_VLEN { H5T_REFERENCE { H5T_STD_REF_OBJECT }}
DATASPACE SIMPLE { (2) / (2) }
DATA {
(0): (DATASET 239 /x), (DATASET 514 /y)
}

}
}
}

[raster columns=2,enhanced,equal height group=D]

Listing 7: NetCDF dump: Compression disabled

$ ncdump -s -h data.nc
netcdf data {
dimensions:
x = 100 ;
y = 100 ;

variables:
int data(x, y) ;

data:_Storage = "contiguous" ;
data:_Endianness = "little" ;

// global attributes:
:_Format = "netCDF-4" ;

}

Listing 8: NetCDF dump: Compression enabled

$ ncdump -s -h data.nc
netcdf data {
dimensions:
x = 100 ;
y = 100 ;

variables:
int data(x, y) ;

data:_Storage = "chunked" ;
data:_ChunkSizes = 100, 100 ;
data:_DeflateLevel = 9 ;
data:_Endianness = "little" ;

// global attributes:
:_Format = "netCDF-4" ;

}

3 Quantities to Control Accuracy and Realizability
One feature characteristic for lossy compression is that after compression and decompression steps the data
can lose precision. The difference between the data states is called distortion. Another important term related
to precision loss is accuracy. It describes the degree to which a given value is correct and free from the error,
or how close is the value to the actual value. Another important term is realizability. Realizability refers to
physical constraints of the data, e.g., kinetic energy or water vapor mixing ratio being strictly positive. Data
that fails realizability conditions may be unsuitable for further analysis and may break post-processing chains.
Throughout this section we assume, that data can be of any basic data type, i.e., integer or floating point data
of various bit widths. Note that, in contrary to floating point, integer is an exact data type, i.e., as long as
the domain of the variable fits, the exact value can be stored. The result of a floating-point calculations often
doesn’t fit in the variable and must be rounded.
This section is organized as follows. Firstly, we describe the quantities and then, we classify them in two
groups, in those that can be applied on individual points and those that depend on their neighbours or some

D2.2 Compression Concepts 18/36

3 QUANTITIES TO CONTROL ACCURACY AND REALIZABILITY

other values. In addition, we identify critical constraints for the realizability which may reasonably be enforced
by lossy compression schemes. Finally, we identify quantities that are especially useful for scientists and/or
match our requirements.

3.1 Accuracy of independent points
For a precise mathematical description of quantities, we introduce a number of terms. Suppose, the position
of a point is indexed by x (this can be n-dimentional), d(x) is the data on position x, d̂(x) is the value of the
compressed data on the point x, then its value be d̂(x) = f(d(x)). Note, that some functions such as standard
deviation may actually need the full data set to define the compression bounds. Such methods need to operate
in two passes on the data: in the first pass the parameters p are defined by a function P , then it is applied:
p = P (d), then d̂(x) = f(d(x), p). Result of this function is a vector of parameters. The decompressed value on
the point x we can define as d̃(x) = f(d̂(x)).
The following quantities determine compression of each individual point. The example in Figure 12 illustrates
how data can be changed, when quantities are applied.

Absolute error tolerance is the maximum amount of the residual error in the calculations, which is defined
as ε = |d̃(x)− d(x)|, then |d̃(x)− d(x)| ≤ ε.

Relative error tolerance is a measure of absolute error compared to the size of the calculations, which is
defined as η = ε

|d(x)| . Alternatively, it can be written as δ = 100% · η.

Relative error finest absolute tolerance With a relative tolerance, small numbers around 0 are problem-
atic for compressors, e.g. 1% relative error for the data value 0.01 results in the compressed accuracy of
0.01 ± 0.0001. The finest absolute tolerance limits the smallest relative error. In our example, setting a
relative error finest absolute tolerance of 0.01 would result in an error of ±0.01 for small numbers, while
for large numbers their relative error is considered. Thus, it is the lower bound and guaranteed error for
relative error bounds, where as the absolute tolerance is the guaranteed resolution for all data points.

Precision bits and precision digits indicates how much bits or decimal digits are required to represent the
array values.

Excurse: The largest integer value that can be represented by 24 bits is 16777215. It consists of 8 decimal
digits, but how can we compute this? This can be done by solving the equation dln(2)/ ln(10) · 24e =
7.225 ≈ 8. The answer is, all 24-bit binary numbers can be represented by 8-digit decimal numbers.

The largest floating-point value is (21 − 2−23) ∗ 2127 ≈ 3.402823 ∗ 1038 and consists of 1 sign bit, 8 bits of
exponent and 23 bits of significand precision. It gives from 6 to 9 significant decimal digits precision.

Mean squared error (MSE) is the arithmetic mean of squared errors between uncompressed and original
values.

MSE =
1

N

N∑
i=1

(d̃(xi)− d(xi))2 (5)

Standard deviation is the squared root of the mean squared error.

RMSE =
√
MSE (6)

Average absolute deviation summarises the statistical dispersion or variability.

d =
1

N

N∑
i=1

d̃(x) (7)

σ =
1

N

N∑
i=1

|d̃(x)− d| (8)

In the general form [Wika] the arithmetic mean d can be replaced by some other point, e.g., median or
the result of another measure of central tendency.

D2.2 Compression Concepts 19/36

4 DATA GENERATED BY SIMULATIONS

Peak signal-to-noise ratio (PSNR) is the ratio between the maximum possible power of a signal (max(d)2)
and the power of corrupting noise that affects the fidelity of its representation.

PSNR = 10 log10

(
max(d)2

MSE

)
(9)

Preserved values This list contains values that must be preserved literally, i.e., they cannot be changed and
must be preserved, i.e., only lossless compression can be applied to those values.

3.2 Accuracy of fields
The accuracy of fields considers the values in the neighborhood of data, e.g., we assume that relevant patterns
are preserved after the compression. A field is represented as a grid. Multi-layer grid (multigrid) methods are
multiresolution. Multigrid refinement depends on number of layers. Multigrid methods lead to regional different
resolutions where on finer resolutions neighooring data points are naturally smoother than on coarser grids. For
later analysis it is important to keep relevant features of the field, for example, outstanding high/low values or
those that lead to a high gradient.

Interesting quantities are:

• Maximum absolute step change (amax): We assume, the user tolerates a maximum step change between
two neighboring data points in the original data, i.e., ∀ x in the grid ∀ y neighbor of x : |d(x) − d(y)| ≤
amax. The reason for such a limit might be physical constraints (e.g., this is actually part of realizability)
or simply a technical issue that higher differences break subsequent processing steps.

Thus, this property should be preserved after the compression, i.e., ∀ x in the grid ∀ y neighbor of x :
|d̂(x)− d̂(y)| ≤ amax

• Conservation of the sum (σcon): This value defines the maximum tolerable value for the sum of the values
for the compressed data and the sum of the values for the original data (|

∑
x d(x) −

∑
x d̂(x)| ≤ σcon).

For some fields, analysis may require very small errors on the domain-integral of the field. This typically
happens when this field represents the local amount of a quantity (water, carbon dioxide) whose global
amount is close to equilibrium and therefore changes very slowly. Errors in that total amount translate
into errors of its time derivative which must be small compared to global sources and sinks involved in its
budget, themselves possibly small.

3.3 Realizability of independent points
Physical data obeys in principle many realizability conditions. Post-processing chains may implicitly rely on
such conditions and fail when they are not met. Realizability conditions may be quite complex, e.g. the
pressure, density and temperature of air stored in a file should be related through an equation of state, or the
determinant of a self-correlation matrix should be positive. However only the simplest conditions may reasonably
be enforced by a lossy compression method. Especially since compression is typically a single-field operation,
realizability conditions involving several fields are out of scope. Furthermore it does not seem necessary to
consider realizability conditions that many numerical schemes violate. Conversely if many numerical schemes
are designed to satisfy a certain condition, this points to the importance of that condition and suggests that
enforcing it during lossy compression is desirable.
At this time we consider only one realizability condition:

• Positivity. A primary reason to consider it is its simplicity. A second compelling reason is that most
transport schemes in current use guarantee the positivity of the transported fields (mixing ratios of water
species, chemical species or aerosols).

4 Data Generated by Simulations
Inside an application, a grid is used to describe the covered surfaces of the model, which often is the globe.
Traditionally, the globe has been divided based on the longitude and latitude into rectangular boxes. Since this
produced unevenly sized boxes and singularities closer to the poles, modern climate applications use hexagonal
and triangular meshes. Particularly triangular meshes have an additional advantage, that one can refine regions
and, thus, can decide on the granularity that is needed locally – this leads to numeric approaches of the multi-
grid methods. Grids that follow a regular pattern such as rectangular boxes or simple hexagonal grids are called

D2.2 Compression Concepts 20/36

4 DATA GENERATED BY SIMULATIONS

Figure 7: Scope of variables inside the grids

structured grids. With partially refined grids or when covering complex shapes instead of the globe, the grids
become unstructured as they form an irregular pattern.
To create an hexagonal or triangular grid from the surface of the earth, the earth can be considered to be an
icosaheder where each side can be refined. Variables contain data that can either describes a single value for
each cell, the edges of the cells, or the vertexes of the cells.
Figure 7 shows this localization – the scope of data – for the triangular and hexagonal grids. In some applications,
it is useful to use dummy (so called fill-) values to encode invalid data regions. An example are water temperature
on the globe – data on land cells could be encoded with 30,000.
Larger grids are shown in Figure 9 and in (Figure 8). There are figures provided that illustrate the neighborhood
between data points and for different data localization.

4.0.0.1 Hexagonal grid consists of cells shaped as a flat topped hexagon (Figure 8a). Two ways can be
used to map data to the grid: vertical or horizontal. Values can be located at the centers of the primal grid
(hexagons Figure 8b), and if we connect it to each other, we would see the grid of triangles Figure 8c. If values
are located at the edges Figure 8d and they are connected with their neighbours, then the grid will be seen
Figure 8e. If the values are located at the vertices and they are connected with their neighbours, then the grid
will be seen (Figure 8f).

4.0.0.2 Triangular grid consists of cells shaped as a triangle (Figure 9a). It’s structure is similar to
hexagonal grid. Values can be located at the centers of the primal grid hexagons Figure 9b, and if we connect
it to each other, we would see the grid of triangles Figure 9c. If values are located at the edes (Figure 9d) and
they are connected with its neighbours, then the grid will be seen Figure 9e. If the values are located at the
vertices and they are connected with its neighbours, then the grid will be seen in Figure 9f.

4.1 Addressing Data
In a programming language, regular grids can usally be addressed by n-dimensional arrays. Thus, a 2D array
can be used to store the data of a regular 2D longitude/latitude-based grid.
However, storing irregular grids is not so trivial. For example, a 1D array can be used to hold the data but
then the index has to be determined. Staying by our 2D example, to map a 2D coordinate onto the 1D array, a
mapping between the 2D coordinate and the 1D index has to be found. One strategy to provide the mapping are
space-filing curves. They have the advantage that the indexes of points that close together in the coordinates are
also close together – thus is beneficial as often operations are conducted on neighboring data (stencil operations,
for example). A hilbert curve is an example for one possible enumeration of a multi-dimensional space.

4.1.0.1 Hilbert curve is a continuous space-filing curve, that helps to represent a grid as n-dimensional-
array of values. To visualize its behavior, a 2D grid is shown in Figure 10. In 2D, the basic element of the
Hilbert curve is a square with one open side. Every such square has two end-points, and each of these can
be the entry-point or the exit-point. So, there are four possible varieties of open side. A first order Hilbert
curve consists of one basic element. It is a 2x2 grid. The second order Hilbert curve replaces this element by
four (smaller) basic elements, which are linked together by three joins (4x4 grid). Every next order repeats the
process by replacing each element by four smaller elements and three joins (8x8 grid).
On the Figure 11 is represented 5th level Hilbert curve for the 256x256 data, that is mapped to 32x32 grid.

D2.2 Compression Concepts 21/36

4 DATA GENERATED BY SIMULATIONS

The characteristics of Hilbert curve can be extended to more than two dimensions. The first step figure can be
wrapped up in so many dimensions as it is needed and the points neighbours will be always saved.

4.2 Quantities not related to data quality
An other important quantity is the compression/decompression speed. When set, the compression/decom-
pression throughput will be limited to this value, otherwise a default will be used, to achieve maximum error
tolerance.

4.3 Selection of Quantities
Using quantities we will be able to develop a compression tool with auto-selection of compression algorithm,
considering the noise level, throughput, compression ratio, as well as other user specifications. We will also
create a tool for generate of synthetic noise with given characteristics. Users will be able to simulate the effect
of data compression and determine an acceptable noise level.

D2.2 Compression Concepts 22/36

4 DATA GENERATED BY SIMULATIONS

(a) Empty hexagonal grid (b) Hexagonal grid with data at the cell centers

(c) Hexagonal grid with data at the cell’s cen-
ters, connected neighbours (d) Hexagonal grid with data on the edges

(e) Hexagonal grid with data on the edges, con-
nected neighbours

(f) Hexagonal grid with data at the vertices /
connected neighbours

Figure 8: Hexagonal grid

D2.2 Compression Concepts 23/36

4 DATA GENERATED BY SIMULATIONS

(a) Empty triangular grid (b) Triangular grid with data at the cell centers

(c) Triangular grid with data at the cell centers,
connected neighbours (d) Triangular grid with data on the edges

(e) Triangular grid with data on the edges, con-
nected neighbours

(f) Triangular grid with data on the vertices /
connected neighbours

Figure 9: Triangular grid

D2.2 Compression Concepts 24/36

4 DATA GENERATED BY SIMULATIONS

Figure 10: Hilbert fitting curve

Figure 11: Hilbert fitting curve

D2.2 Compression Concepts 25/36

5 DESIGN

1.0000 2.0000 3.0000

5.0000 4.0000 1.0000

7.0000 3.0000 5.0000

(a) Array before compression.

1.0018 2.0036 3.0054

5.0071 4.0065 1.0018

7.0092 3.0054 5.0071

(b) Decompressed array.

η ≤ 0.002

ε ≤ 0.01

MSE = 0.00003388

RMSE = 0.005820739

σ = 1.667988889

PSNR ≈ 60

(c) Quantities.

Figure 12: Lossy compression of a 3x3-array.

5 Design
Within AIMES, we design and implement the Scientific Compression Interface Library (SCIL). The
main purpose of SCIL is compression/decompression of scientific data, especially, of climate modeling data. It
uses different third party compression libraries as well as specifically developed lossy and lossless compression
methods. The advantage of the library is, that users don’t need to be familiar with all the compression algorithms
and its characteristics. Based on user specified quantities, the library selects automatically the best method.
This section describes the design of our prototype library and how the accuracy quantities can be exploited.
First, we will start with compression path and explain how quantities can be used to compress/decompress data.
Then, we will show how other SCIL capabilities can be used. That are (1) creation of various random data
patterns, (2) addition of noise with certain characteristics to existing data (3) and validation of the correctness
of the compression in respect to the selected accuracy. Then, we describe the additional tools delivered with
our prototype that allow us to use these features on existing data. And finally, we will describe the high-level
internals of the library.

5.1 Interfacing I/O Middleware
In our work we primarily target the NetCDF4 C-API. Our intention is to integrate the clever compression
functionality of SCIL into NetCDF4. This can be done directly in NetCDF4, but due the dependency, the
functionality can also be added indirectly into HDF5 library. Even more, the architecture of HDF5 allows a
loosely integration of SCIL, i.e. it can be developed as an independent library. The advantages of this approach
are good testability without HDF5 and reusage of the library in other projects. Later, the interface can also be
ported to any programming language with C-bindings support, or used by other libraries.
In order to make the compression path work NetCDF and HDF5 require additional functionality. Firstly, a
quantity passing mechanism is required, to pass quantities from application to the SCIL library. Secondly, an
HDF5 filter is required for communication with SCIL.
The prototypes of the quantity passing mechanism and the HDF5 filter are already implemented (Figure 13).
Using them, the application can send the data together with quantities to NetCDF4, NetCDF4 can pass them
to HDF5, and HDF5 in turn can pass them to SCIL, yielding compressed data as result. After that, the data
can be saved in a file. The decompression step works similar, but in reverse direction.

5.2 Tools
We provide three categories of tools. Thus, like shown on the Figure 14, we will create a compression tool, a
noise adder and a 3D plotter. Each of them is connected with supported by SCIL file formats: NetCDF and
CSV. Compression tool and noise adder will support user setted file format, one plotter we want make for each
file format.

5.3 C-API
In this section we present a subset of the SCIL C-API, of which we think can outline the compression concept.
We will take a look at data structures, (de-)compression function and some auxiliary functions. SCIL is still
under development and the API can change. Please, visit our GIT-Repository 6 for the most recent information.

6https://github.com/JulianKunkel/scil.git

D2.2 Compression Concepts 26/36

https://github.com/JulianKunkel/scil.git

5 DESIGN

Application NetCDF4
+ Quantities support

HDF5
+ Quantities support

+ SCIL Filter

SCIL
C-API

Python-API

C++-API

other I/O libraries
e.g. GRIB

HDF5-File

¬
quantities

data

quantities

data

®
quantities

data

¯
compressed data°

compressed data

Figure 13: Compression path. Decompression works in inverse direction. (Gray-out elements are out of scope
of the project.)

Tool Set

scil-compress scil-add-noise scil-plot

scil-plot-nc.py scil-plot-csv.py

Figure 14: Tool set

5.3.1 Initialization of Hints, Context and Dimensions

User hints are stored in the object of type scil_user_hints_t, that must must be initialize by the function
scil_initialize_user_hints, before it can be used. This object contains a number of members, that
can be directly accessed and modified. In the example in Listing 9 we use force_compression_methods,
absolute_tolerance and significant_bits.

Signature 8: SCIL user hints initialization.

void scil_initialize_user_hints(
scil_user_hints_t* hints);

OUT hints User hints.

The context is a data structure of type scil_context_t. It contains information that is needed to choose
the optimal compression method. It is also possible to pass a list of special values that for some reason shall not
be touched by lossy compression algorithms. The function scil_create_context is responsible for creation
of valid contexts.

D2.2 Compression Concepts 27/36

5 DESIGN

Signature 9: SCIL context initialization.

int scil_create_context(
scil_context_t** out_ctx,
SCIL_Datatype_t datatype,
int special_values_count,
void* special_values,
const scil_user_hints_t* hints);

OUT out_ctx Pointer to the context.
IN datatype Datatype of the data (e.g. SCIL_TYPE_FLOAT, . . .)
IN special_values_count Number of special values.
IN special_values List of values that must be preserved.
IN hints User hints.
RETURN Error type. If no error returns 0.

The dimensions are represented through the object of type scil_dims_t. Currently, it supports upto 4
dimensions and can be initalized by one of the functions listed in Signature 10. There are also preparations for
dynamic initialization of arbitrary number of dimensions, but no implementation at the moment. For climate
data 4 dimensions seems to be sufficient.
Signature 10: SCIL dimension initialization.

void scil_initialize_dims_array(
scil_dims_t* dims,
uint8_t dimensions_count,
const size_t* dimensions_length);

OUT dims Pointer to the dimension object.
IN dimesions_count Number of dimensions.
IN dimensions_length Size of dimensions.

5.3.2 Compression and Decompression

The SCIL compresson method (Signature 11) uses the data from the context ctx to select the best compression
algorithm. ctx is a data structure where user specified quantities are located.

Signature 11: SCIL compression function.

int scil_compress(
byte* restrict dest,
size_t dest_size,
void* restrict source,
scil_dims_t* dims,
size_t* restrict out_size,
scil_context_t* ctx);

OUT dest Pointer to the encoded data.
IN dest_size Maximal size of encoded data in bytes.
IN source Pointer to the uncompressed data.
IN dims Dimensions of the uncompressed data.
IN ctx Compression context.
OUT out_size Current size of encoded data in bytes.
RETURN Error type. If no error returns 0.

The definitions of accuracy and dimensions are required before the compression can take place. In the next
step, data the dimensions can be initialized an assigned to the data. After that the data can be compression.
The dimensions must be defined before the decompression. After that the decompression function (Signature 12)
can be called.

D2.2 Compression Concepts 28/36

5 DESIGN

Signature 12: SCIL decompression function.

int scil_decompress(
enum SCIL_Datatype datatype,
void* restrict dest,
scil_dims_t* dims,
byte* restrict source,
const size_t source_size);

IN datatype Type of the decompressed data.
OUT dest Pointer to the uncompressed data.
IN dims Dimensions of the decoded data.
IN source Pointer to the encoded data.
IN source_size Size of encoded data in bytes.
RETURN Error type. If no error returns 0.

5.3.3 Noise Generation

Noise follows SCIL’s hints limitations. With user hints we can choose parameters of noise and it’s level. This
function (will add the noise of a given type to the data array.

Signature 13: SCIL noise function.

int scil_add_noise(
void* data,
scil_dims_t* dims,
scil_user_hints_t hints);

IN/OUT data Pointer to data.
IN dims Dimensions of data.
IN hints User hints.
RETURN error type. If no error returns 0.

The task of the scil_add_noise_xxx tool family is to add noise to the users data. Two different ways are
provided by our tools. (1) Creating a copy of the file with noise. (2) Adding noise on-the-fly, while reading
data. This can be implemented by a HDF5 filter.
Our tools shall support the following noise modification features. (1) Apply a filter to reduce or amplify certain
characteristics. (2) Add multiple noise functions together, typically with a weighted sum so that we can control
how much each noise function contributes to the total. (3) Interpolation of generated noise, to produce smooth
noise values.

5.3.4 Validation

SCIL provides a validation function (Signature 14) to check compressed data for accuracy. It compares com-
pressed and decompressed data, and checks if conditions provided by ctx parameter are met. Validation fails
if the computed relative error is larger than the value in ctx.

D2.2 Compression Concepts 29/36

5 DESIGN

Signature 14: SCIL validation function.

int scil_validate_compression(
enum SCIL_Datatype datatype,
const void* restrict data_uncompressed,
scil_dims_t* dims,
byte* restrict data_compressed,
const size_t compressed_size,
const scil_context_t* ctx,
scil_user_hints_t* out_accuracy);

IN datatype Data type of the input data.
IN data_uncompressed Pointer to the uncompressed data.
IN dims Dimensions of the uncompressed data.
IN data_compressed Pointer to the compressed data.
IN compressed_size Size of compressed data in bytes.
IN ctx Compression context.
OUT out_accuracy Output accuracy contains a set of hints with the observed finest

resolution/required precision to accept the data.
RETURN Error type. If no error returns 0.

D2.2 Compression Concepts 30/36

5 DESIGN

5.3.5 Example

Listing 9: SCIL in action.

1 #include <scil.h>
2 #include <scil-util.h>
3

4 int main(){
5 /* HINTS */
6 scil_user_hints_t hints;
7 scil_initialize_user_hints(&hints);
8 hints.force_compression_methods = "1";
9 hints.absolute_tolerance = 0.5;

10 hints.significant_bits = 5;
11

12 /* CONTEXT */
13 scil_context_t* ctx;
14 scil_create_context(&ctx, SCIL_TYPE_DOUBLE, 0, NULL, &hints);
15

16 /* DIMENSIONS */
17 const size_t count = 100;
18 scil_dims_t dims;
19 scil_initialize_dims_1d(&dims, count);
20

21 /* COMPRESSION */
22 size_t u_buf_size = count * sizeof(double);
23 double* u_buf = (double *)SAFE_MALLOC(u_buf_size);
24 for(size_t i = 0; i < count; ++i) {
25 u_buf[i] = (double)(i % 10-5.1);
26 }
27 size_t c_buf_size = u_buf_size + SCIL_BLOCK_HEADER_MAX_SIZE;
28 byte* c_buf = (byte*)SAFE_MALLOC(c_buf_size*4);
29 scil_compress(c_buf, c_buf_size, u_buf, &dims, &c_buf_size, ctx);
30

31 /* DECOMRESSION */
32 double* data_out = (double*)SAFE_MALLOC(u_buf_size);
33 scil_decompress(SCIL_TYPE_DOUBLE, data_out, &dims, c_buf, c_buf_size,

&c_buf[c_buf_size*2]);
34

35 /* VALIDATION */
36 scil_user_hints_t accuracy;
37 scil_validate_compression(SCIL_TYPE_DOUBLE, u_buf, &dims, c_buf,

c_buf_size, ctx, &accuracy);
38

39 free(c_buf);
40 free(data_out);
41 free(u_buf);
42 free(ctx);
43 return 0;
44 }

5.4 Compression chains
SCIL allows some degree of customization of the compression process. The data can be preconditioned and
converted before it is passed to the compression algorithm. Optionaly, after that, a second compression algorithm
can be applied on compressed data.. This section discusses the usage of SCIL in our work.

5.4.1 Strategy

We can imagine three strategies to implement compression chain:

1. With conversion (Figure 15a). This strategy uses a floating point values to integer converter. This leads
to accuracy reduction. The task of the preconditioners is to increase compression rates of implemented
algorithms. One is placed before quantizer and one after. In the final step, a compressor compresses the
byte array.

2. Without conversion (Figure 15b). This strategy operates on all data types without quantization.

D2.2 Compression Concepts 31/36

5 DESIGN

Floating point
Preconditioner

Floating point
values

Converter Integer
Preconditioner

Integer
values

Compressor
Compressed data

(a) First strategy: compression chain with quantization.

Floating point or
Integer

Preconditioner

Values

Compressor
Compressed data

(b) Second strategy: compression chain without quantization.

List of functions

Values

Compressed data

(c) Third strategy: list of function.

Figure 15: Sequence diagrams of compression chains.

Strategy
1 2 3

Debuggability + + -
Ease-of-implementation - + -
Ease-of-use - - +?

Table 4: Comparison of chain strategies.

3. As list of functions (Figure 15c). This strategy uses several preconditioner functions only.

The advantages and disadvantages of the strategies are summaries in the Table 4.
The basic idea is to split the compression into different steps and compression process. Using this approach our
library will support different compression scenarios.
Then we define three types of building block:

1. Preconditioner uses data transformation techniques to present the data in a different form, but without
changing the “solution”. The purpose of a preconditioner is to produce optimal data representation for
the next chain build block, so that the next step can be done more efficiently. There are two types of
preconditioners.

• Floating point preconditioner operates on floating point data type.

• Integer precoditioner operates on integer data type.

2. Converter transforms the data. For example it can be a qunatizer which transformst floating point values
type to integer values.

3. Compressor applies compression algorithm on any type of input data. The output of compressor is byte
data.

Not all compression algorithms support all data types. This may be problematic for some compression chains.
Therefore, we must adapt input (uncompressed) data to the given by a compression algorithm data types.

D2.2 Compression Concepts 32/36

6 IMPLEMENTATION

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

processed
data

processed
data

data

floatfloat int any any

Figure 16: Complete compression chain.

6 Implementation
In this section we will describe the SCIL compression chain and SCIL context in more detail and tell you how
the components will be integrated in HDF5 and NetCDF4.

6.1 Implementation of compression chain.
Our approach can benefit from lossy and lossless compression methods in the following way. The first compres-
sion algorithm is thought to be specialized on number compression. Typically, it will be a lossy compression
algorithm and will reduce the precision of data. The second algorithm will interpret data as a byte stream, and
will compress it with lossless method. Actually, we distiguish between two types of compressors:

• Data type specific compressor can be lossy or lossless, takes distinct data and produces byte data.

• Byte compressor is always lossless, takes data of any data type and produces byte data.

In our exprience converters and specialized compressors work best on special data. Therefore, before we place
before preconditioners before the modules. In some cases we need to apply several functions to the data, before
the optimal state is reached, therefore it is possible to set several preconditioners.
To be flexible the component must support a broad range of types.
The output from previous building block is used as input in the next building block. The preconditioner blocks
are optional and can also contain more than one preconditioner.
One of the most important objects of study is the automatic chain builder for optimal compression. At the
moment we do not have a clear idea how we are going to implement this. We think we can do it by a set of
empirical rules, which has to be created first. At this point we are very optimistic. We hope, that we get enough
rules to train a decision tree. In that case after pruning we will probably be able to transform the decision tree
into a new set of short and meaningful rules, which will be also valid for missing information. In this way we
hope to learn new information.

6.2 Integration in HDF5/NetCDF
The two main question related to HDF5 and NetCDF4 are how to integrated SCIL and how to pass user
quantities.
HDF5 provides a general and well-documented filter concept, based on a set of callback functions. The imple-
mentation these functions and creation of a compatible filter in general will probably be a straightforward task.
The integration and usage of third party filters is also well-supported in HDF5. We will use the following inter-
faces for that. The filter and compression interface (H5Z) can be used for (un-)registering a filter at runtime.
The dataset interface (H5D) can be used to attach a filter to a dataset. The property list interface (H5P) can
be used to pass configuration to datasets and filters (it is also a general concept).
H5P is a powerful configuration mechanism in HDF5. There are no restriction on how a property list has to
look like. HDF5 simply forwards the property list from application directly to the filter. The interpretation of
the list is done by the filter. It allows to put set of quantities into a property list and forward it to the filter.
Unfortunately, there is no such mechanism in NetCDF. NetCDF uses a completely different and incompatible
approach. Instead of passing a configuration object to the opened file object it uses specialized functions to
change its internal state. Therefore, in our view the extension of NetCDF interface is the best solution to this

D2.2 Compression Concepts 33/36

6 IMPLEMENTATION

problem. At the moment we don’t have a clear picture, how the interface will be look like, but we can image it
work like in Listing 10. This will be a subject of discussion with NetCDF community.

6.3 Extenstion of NetCDF4 Interface
The code in the Listing 10 shows two alternatives of how SCIL can be integrated in NetCDF4.
The first alternative in Lines 26 to 32 is motivated by the rule: “Good interfaces are easy to use correctly and hard
to use incorrectly”. Besides, it follows the basic NetCDF4 interface concept, i.e, no direct access to the context
is allowed. In this implementation a context would be allocated by nc_def_ctx and managed internally by
NetCDF. Modifications of the context would only be possible by special functions like nc_add_ctx_hint.
The function nc_add_ctx_hint is a bit different. Each call to the function takes a key-value-pair and adds a
hint to the context, allowing to define any number of quantities. Actually, to be fully compliant with NetCDF4,
this job must be done by arrays of keys and values, but we decided not go this way, since this is error prone.
This design is generic enough to be used with other libraries. Even the already available deflate algorithm could
be easily ported.
The second alternative in Lines 34 to 38 provides on one side a set of powerful features, and on the other side it
has serious drawbacks. Here hints are created and defined using the SCIL interface. Then they are passed as
a pointer to nc_def_var_scil_compression function. The function would create a deep copy of hints to
prevent a category of invalid memory accesses, that can occur when the object is destroyed, after it was passed
to NetCDF. The main advantages of this concept are probably flexibility and maintainability. hints could be
passed from application to NetCDF, from NetCDF to HDF5, and from HDF5 to SCIL without any conversion
and would simplify the implementation a lot. Besides, it would make SCIL completely independent from
NetCDF, and new SCIL features would be immediately available without any adaption of NetCDF interface.
The work in NetCDF and HDF5 has to be done once and, if done properly, never again. The saved time
could be used for development of SCIL. The drawbacks are the usage of two different interfaces is non-intuitive
and is an additional hurdle for the user. Furthermore, this approach allows a context to exist outside the
NetCDF4, which violates the NetCDF4 interface concept and is less secure. It can be a source of memory
errors, like uninitialized or invalid memory access. Uninitialized memory access can occur, when user forgets to
call scil_initialize_user_hints. Invalid memory access can occur when no memory was allocated to
the pointer. Both types of error cause undefined behavior and could be difficult to debug.

D2.2 Compression Concepts 34/36

6 IMPLEMENTATION

Listing 10: Sample code for compression in NetCDF using SCIL.

1 #include <stdlib.h>
2 #include <netcdf.h>
3

4 #define NDIMS 2
5 #define NX 100
6 #define NY 100
7

8 int main(int argc, char** argv) {
9 int ncid, x_dimid, y_dimid, varid;

10 int dimids[NDIMS];
11 int d[NX][NY];
12 int x, y, retval;
13 for (x = 0; x < NX; x++)
14 for (y = 0; y < NY; y++){
15 d[x][y] = x + y;
16 }
17 nc_create("data.nc", NC_NETCDF4 | NC_CLOBBER, &ncid);
18 nc_def_dim(ncid, "x", NX, &x_dimid);
19 nc_def_dim(ncid, "y", NY, &y_dimid);
20 dimids[0] = x_dimid;
21 dimids[1] = y_dimid;
22 nc_def_var(ncid, "data", NC_INT, NDIMS, dimids, &varid);
23

24 /* nc_def_var_deflate(ncid, varid, 0, 1, 9); */
25

26 /* Alternative 1: */
27 int ctxid;
28 nc_def_ctx(NC_SCIL_COMPRESSION, &ctxid);
29 nc_add_ctx_hint(NC_SCIL_SIGNIFICANT_BITS, 5, ctxid);
30 nc_add_ctx_hint(NC_SCIL_ABSOLUTE_TOLERANCE, 0.5, ctxid);
31 nc_add_ctx_hint(NC_SCIL_FORCE_COMPRESSION_METHODS, 1, ctxid);
32 nc_def_var_compression(ncid, varid, ctxid);
33

34 /* Alternative 2: */
35 scil_user_hints_t hints;
36 scil_initialize_user_hints(&hints);
37 hints.absolute_tolerance = 0.5;
38 nc_def_var_scil_compression(ncid, varid, &hints);
39

40 nc_enddef(ncid);
41 nc_put_var_int(ncid, varid, &d[0][0]);
42

43 nc_close(ncid);
44 return 0;
45 }

D2.2 Compression Concepts 35/36

REFERENCES

7 Summary and Conclusions
The main purpose of compression methods is to shrink data size and to save storage space, but they also
possess a huge potential to reduce the gap between computational power and I/O performance, because often
after compression less data has to be moved. For these reasons, many modern file formats, in particular HDF5
and NetCDF4, provide native support for compression. This is especially beneficial in climate science, where
data amounts are huge and are growing constantly. Unfortunately, the compression algorithms used in HDF5
and NetCDF4 are lossless and doesn’t meet the requirements of climate science to full extent. In climate sciene,
there is often nothing against reducing the precision of data by lossy compression algorithms, when the impact
on the simulation results is negligible. After that, the data can still be compressed with a lossless compression
algorithm. Application of both kinds of compression methods can result in a higher compression ratio, compared
to compression ratio of only one algorithm.
Theoretically, it’s feasible to do this work manually, but due to high effort it’s unacceptable. All compression
methods have their strenghts and weaknesses. Many of them are even specialized on a particular kind data.
Therefore good knowledge of compression algorithms as well as of data is required to do the complex task right.
Scientific Compression Interface Library (SCIL) facilitates this task. It supports a number of lossless and lossy
compression algorithms and can choose automatically the best one based on pre-defined user hints. As the
name suggests, user hints are a set of metrics, that describe required precision, maximum error, consider noise
and take some other metrics into account.
The primary objective of our project is the integration of SCIL into NetCDF4/HDF5 libraries. This includes
improvement of the SCIL library, development of an HDF5 filter and implementation of a NetCDF4 interface
extension. The secondary objective is the development of stand-alone auxiliary tools, e.g., for noise generation
or visualization.
We have already a functional prototype of the SCIL library. Its compression chain allows to construct different
compression processes for different compression scenarios on the fly. It works pretty well with user hints, which
can be set at runtime. The extensible architecture of HDF5 allows to attach easily third party filters and plugins.
For that purpose, it provides a number of well documented interfaces. Based on these interfaces we build a
partially functional HDF5-SCIL-Filter. Unfortunately, the NetCDF architecture doesn’t support integration of
any kind of third party functionality. It make the integration of SCIL more complicated. One possible solution
to this problem (and also our approach) is the extension of the NetCDF4 interface. We have different proposals
for how this can be done, but the final decision will probably be made in the course of the project.

Acknowledgement
This work was supported by the German Research Foundation (DFG) through the Priority Programme 1648
„Software for Exascale Computing“ (SPPEXA).

References
[AKD15] M. Aechtner, Kevlahan, and T. Dubos. “A conservative adaptive wavelet method for the shallow-

water equations on the sphere”. In: Q.J.R. Meteorol. Soc. 141.690 (July 2015), pp. 1712–1726.

[DC15] Sheng Di and Franck Cappello. “Fast Error-bounded Lossy HPC Data Compression with SZ”. In:
(2015).

[Fil] File formats for climate data. https://climatedataguide.ucar.edu/climate-data-
tools-and-analysis/common-climate-data-formats-overview. [Online; accessed
04-10-2016].

[Fpc] Floating point compression. http : / / computation . llnl . gov / projects / floating -
point-compression. [Online; accessed 04-10-2016]. 2016.

[Gnu] GSL - GNU Scientific Library. https://www.gnu.org/software/gsl/. [Online; accessed
04-10-2016].

[Gzi] GZIP algorithm. http://www.gzip.org/algorithm.txt. [Online; accessed 04-10-2016].

[Hdfa] HDF5. https://support.hdfgroup.org/HDF5/. [Online; accessed 04-10-2016]. 2016.

D2.2 Compression Concepts 36/36

https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/common-climate-data-formats-overview
https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/common-climate-data-formats-overview
http://computation.llnl.gov/projects/floating-point-compression
http://computation.llnl.gov/projects/floating-point-compression
https://www.gnu.org/software/gsl/
http://www.gzip.org/algorithm.txt
https://support.hdfgroup.org/HDF5/

REFERENCES

[Hdfb] HDF5 Filters. https://support.hdfgroup.org/HDF5/doc/H5.user/Filters.html.
[Online; accessed 04-10-2016].

[Kas] Jeremy Kasdin. “Discrete Simulation of Colored Noise and Stochastic Processes and 1/f power a
Power Law Noise Generation,” in: Proceedings of the IEEE, V. 83, Number 5 ().

[LI06] Peter Lindstrom and Martin Isenburg. “Fast and Efficient Compression of Floating-Point Data”. In:
IEEE Transactions on Visualization and Computer Graphics, 12(5):1245-1250 (2006).

[Lz4] Yann Collet. LZ4 explained. http://fastcompression.blogspot.de/2011/05/lz4-
explained.html. [Online; accessed 04-10-2016]. May 2011.

[MGB11] M.Stoyanov, M. Gunzburger, and J. Burkardt. “Pink Noise, 1/f power alpha Noise, and Their Effect
on Solutions of Differential Equations,” in: International Journal for Uncertainty Quantification,
V. 1, Number 3 (2011).

[Mis] HLRE-3 Mistral. https://www.dkrz.de/Klimarechner/hpc. [Online; accessed 04-10-2016].
2016.

[MMM12] O.A. Mahdi, M.A. Mohammed, and A.J. Mohamed. “Implementing a Novel Approach an Convert
Audio Compression to Text Coding via Hybrid Technique”. In: International Journal of Computer
Science Issues. 9 (6, No. 3): 53–59. (2012).

[Nrl] Numerical recipes. http://numerical.recipes/. [Online; accessed 04-10-2016].

[SKri] Armin Schaare and Julian Kunkel. SCIL - Scientific Compression Interface Library. Software Lab
Report. April 2006.

[Sto11] Miroslav Stoyanov. CNOISE 1/Fα Power Law Noise Generation. https://people.sc.fsu.
edu/~jburkardt/c_src/cnoise/cnoise.html. [Online; accessed 04-10-2016]. 2011.

[Wava] Source code for 2D wavelets, wavelet packets (complete or overcomplete), complex wavelets, and
complex wavelet packets. http://eeweb.poly.edu/~onur/source.html. [Online; accessed
04-10-2016]. 2012.

[Wavb] Source code wavelet-based adaptive numerics on icosahedral spherical meshes. https://bitbucket.
org/kevlahan/wavetrisk. [Online; accessed 03-02-2017]. 2016.

[Wika] Average absolute deviation. https://en.wikipedia.org/wiki/Average_absolute_
deviation. [Online; accessed 04-10-2016]. 2016.

[Wikb] Colors of noise. https://en.wikipedia.org/wiki/Colors_of_noise. [Online; accessed
04-10-2016].

[You10] Yuli You. “Audio Coding: Theory and Applications”. In: Springer (2010).

D2.2 Compression Concepts 37/36

https://support.hdfgroup.org/HDF5/doc/H5.user/Filters.html
http://fastcompression.blogspot.de/2011/05/lz4-explained.html
http://fastcompression.blogspot.de/2011/05/lz4-explained.html
https://www.dkrz.de/Klimarechner/hpc
http://numerical.recipes/
https://people.sc.fsu.edu/~jburkardt/c_src/cnoise/cnoise.html
https://people.sc.fsu.edu/~jburkardt/c_src/cnoise/cnoise.html
http://eeweb.poly.edu/~onur/source.html
https://bitbucket.org/kevlahan/wavetrisk
https://bitbucket.org/kevlahan/wavetrisk
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Colors_of_noise

	Relation to the Project
	Related Work
	Compression
	Scientific data
	File formats
	Modern File Formats

	Quantities to Control Accuracy and Realizability
	Accuracy of independent points
	Accuracy of fields
	Realizability of independent points

	Data Generated by Simulations
	Addressing Data
	Quantities not related to data quality
	Selection of Quantities

	Design
	Interfacing I/O Middleware
	Tools
	C-API
	Compression chains

	Implementation
	Implementation of compression chain.
	Integration in HDF5/NetCDF
	Extenstion of NetCDF4 Interface

	Summary and Conclusions

