
D1.2 DSL Concepts for Icosahedral Models

Nabeeh Jumah Julian Kunkel Michel Müller

Workpackage: WP1 Towards higher-level code design
Responsible institution: Kunkel
Contributing institutions: Universität Hamburg, RIKEN, IPSL, Tokyo Institute of Technology
Date of submission: March 2018

Contents

1 Introduction 2
1.1 Relation to the Project . 2
1.2 Motivation . 2
1.3 Structure of this Document 3

2 Euclidean- and Icosahedral Grid Geometries 3

3 Methodology 3

4 Model-Specific Dialects Reviewed 4

5 GGDML: The DSL Concepts 5
5.1 The modeling language . 5
5.2 Declarations . 5
5.3 Grid Specification . 6
5.4 Iterator . 7
5.5 Variable References . 7
5.6 Reduction Expressions . 7

6 Hybrid Fortran and ASUCA 8
6.1 Parallel Loop Abstraction 8
6.2 Compile-time Defined Memory Layout and Device Data

Region . 9
6.3 Transformed Code . 12
6.4 Code Transformation Method 14

7 Experiments 15
7.1 GGDML . 15
7.2 Hybrid Fortran and ASUCA 19

8 Related Work 25

9 Summary and Conclusions 26

Disclaimer: This material reflects only the author’s view and the funding agency is not responsible for any use that may be made of

the information it contains

1 INTRODUCTION

Abstract

Exploiting the power of HPC, is a main concern for the scientists in the climate and atmospheric sciences.
The general-purpose languages and their compilers are not sufficient to help them get the optimal use of
the computer resources. In the AIMES project WP1, we study the approach of higher-level coding to
provide performance poratbility. We examine the use of a domain-specific language to provide the scientists
a tool to develop software using the domain concepts. Our approach is to extend the modeling language with
extensions that are developed based on abstractions of the scientific concepts. The development of the model
takes place mainly using the general-purpose language. However, the use of the extensions allows coding
some parts of the model from a scientific perspective instead of the machine and performance perspectives.
Such approach allows the scientists to write the scientific applications with a readable code without any
optimization or hardware-related details. The performance portability is offered with the help of a source-
to-source translation tool that translates the source code into an optimized code with respect to a specific
machine. The higher-level semantics of the language extensions help the translation process to use the
performance features of the machine with the guidance of configuration information that allow the user to
control the optimization process.

As a first step, at the beginning of the project, we have explored the development of language extensions
to extend the Fortran language in each of the three models. The result was a set of model-specific dialects,
that were published in the first deliverable for this workpackage. In collaboration with the scientists each of
whom masters one of the subject models, we have chosen a set of hand optimized Fortran codes from the
models, to seek for the possible opportunities for the language extensions development. We have suggested
abstractions to extend the Fortran language to serve the models, and based on the suggestions we have
rewritten the given codes with the language extentions. We have discussed the suggestions based on the
rewritten codes, and formalized the specifications of the language extensions after the agreement on them.

In this report we discuss the work that has been done in order to develop a domain-specific language
based on the model-specific dialects. The idea is to find the commonalities between the language extensions
developed in the model-specific dialects to identify the scientific sbstractions that serve the domain science,
and formulate domain-based language extensions.

1 Introduction

This section describes first the relation to the project according to the project proposal in Section 1.1. Then
the motivation for the work that is done under this task is discussed in Section 1.2. A brief description of
the methodology that we have used during this task is given in ??. Section 1.3 describes the structure of this
document.

1.1 Relation to the Project

This report and whitepaper contains the high-level description of the meta-dsl and illustrating examples demon-
strating its use. It also summarizes experiences with converting code into the highlevel representation.
The following text is the description of the project proposal for this task and deliverable:
In this task, the meta-dsl is designed that is able to describe common operations of all icosahedral models. This

abstraction extends general-purpose programming languages allowing scientists to express high-level operations
naturally. It will offer a memory-layout independent formulation and allow adaption of the memory structures
based on the architecture. Vendors and computer scientists are involved to enable translation of the abstrac-
tion into performant memory-layouts and code for different architectures. This approach fosters the separation
of concern between scientific domain and computer science (optimization). It will demonstrate that the pro-
gramming abstractions allow better performance-portability of the applications for current and future machines
since architecture- specific tuning is now cleanly encapsulated within the programming systems. In a co-design
between domain-scientists, vendors and computer scientists a suitable high-level representation is chosen that
can be converted to efficient architure-specific code as well. During the design, we also involve a mathematician
working on the field to explore how the created meta-dsl can become independent of numerical specifics such as
solver and potential grid refinement.

1.2 Motivation

The diversity of hardware architectures that are used to provide performance for climate/atmospheric models
is a challenge facing the development of such models. The development and the maintainability of the models
is especially challenging when it needs to run on different architectures. The semantics of the general-purpose
languages (GPL) limit the compilers use of the target machine’s capabilities. Thus, the code needs to be

D1.2 DSL Concepts for Icosahedral Models 2/28

3 METHODOLOGY

manually modified to fit a specific machine to use the performance features it provides. Running a model on
many different machines requires rewriting some parts of the code to fit the features of the different architectures
and hardware configurations, yielding redundant code sections which are coded for different machines. The
Scientists who develop such models need to have a deep knowledge of the technical lower-level details of the
different architectures, and the necessary software development skills to write codes that use their features.

In this workpackage we investigate an approach that uses higher-level code that abstracts scientific concepts
instead of the machine-dependent lower-level optimization details. We develop the GGDML (General rid Defi-
nition and Manipulation Language) DSL which consists of a set of language extensions to extend the modeling
general-purpose language.
The source code that is written with GGDML is translated with a source-to-source translation tool. This tool
translates the code into an optimized general-purpose language code. The GGDML extensions help the tool to
optimize the source code.

1.3 Structure of this Document

In Section 2 the computation in icosahedral models is introduced. Section 3 discusses the methodology. Then
in Section 4 we review the developement of the model-specific dialects which were published in the previous
deliverable (D1.1 Model-Specific Dialect Formulations). The GGDML domain-specific language extensions are
discussed in Section 5. The Hybrid Fortran development is discussed in Section 6. Section 7 discusses the
experiments and the results that has been done to evaluate the developments. A review of related work in the
literature and known projects is dicussed in Section 8. And finally, Section 9 gives a summary and conclusions
of the work described in this document.

2 Euclidean- and Icosahedral Grid Geometries

In climate models, the grid is an essential part for the development of codes which compute the values of
the variables that represent fields over some space. Grids are used to discretize the space over which the
variables are measured. Some models use rectangular structured grids which simply address data by Euclidean
space coordinates. An advantage of modeling with such grids is the simplicity of mapping and addressing of a
variable’s values. The values of a variable on a regular grid is stored in a multi-dimensional array. To access
a variable’s value, direct addressing with an explicitly-provided index for each dimension is used. In fact this
represents a simpler addressing scheme in computer memory, which has performance advantages with regards to
how efficiently an implementation can make use of the available memory bandwidth, especially when running on
hardware architectures that are heavily optimized for sequential access performance (e.g. GPUs). However, the
main shortcoming of rectangular grids is the difficulty to account for the curvature of the earth, which becomes
increasingly problematic with increasing scale of the model, that is, a rectangular grid that covers an increasing
surface area contains rectangles with either different areas or different shapes depending on the position of
the rectangle. Thus, rectangular grids with longitude/latitude do not fit global climate/atmospheric models.
This trade-off leads to the continuing need for different grid types to support global models development. The
requirement of some models for a more isotropic and equal-area global grid creates the need to go beyond
Euclidean space, e.g. towards the icosahedral geometry.

An icosahedral model is one that uses an icosahedral grid, which represents the earth surface into an icosahedron.
The faces of an icosahedron are further divided into smaller traiangles repeatedly to a level that is enough to
provide an intended resolution. Further refinements for some triangles allow for nested grids, which provide
higher resolution for specific regions on the globe. ICON for instance exhibits such capability, which is not the
case for simple structured grids.
In icosahedral grids, hexagons can be synthesized. Yet pentagonal areas still exist then. Thus we see icosahedral
models use either traiangular or hexagonal grids. Variables are declared with respect to the grid. They can be
declared at the centers of the cells, on the edges of the cells, or at their vertices.

3 Methodology

Our effort in this workpackage to improve the software development process is based on using higher-level
language extensions, which allows to bypass the shortcomings of the lower-level semantics of the general-purpose
programming languages. The higher-level semantics enable the code translation process to transform the source
code in a way that exploits the capabilities of the underlying hardware. No optimization technical details need
to be written in the source code. Thus, scientists from the domain science do not need to think about the

D1.2 DSL Concepts for Icosahedral Models 3/28

4 MODEL-SPECIFIC DIALECTS REVIEWED

Figure 1: Separation of Concerns

hardware and performance details. In the work that is done in this workpackage we commit to the principle of
separation of concerns as illustrated in Figure 1:

• Domain scientists code the problem from a scientific perspective

• Scientific programmers configure the code optimization within the source-to-source translation process

The scientists write the source code that solves a scientific problem based on scientific concepts. The GPL
that the scientists generally use to build their model is used. However, the scientists can also use higher-level
language extensions to write some parts of the code wherever they see that needed, although the whole code
could be developed with the base language (without the extensions).
The source code is processed to translate the higher-level code into a form that is optimized with respect to
a specific target machine. The code translation process is guided by configuration information that allows the
translation process to make the necessary transformations in order to exploit the capabilities of the machine.
The translation is prepared by scientific programmers who have the necessary technical knowledge to harness the
power of the underlying architectures and hardware configurations. During this process, technical annotations
can be used to direct DSLs and extensions like OpenMP.

To enable the developers to write a model’s code in terms of their domain science instead of lower-level opti-
mization details, the language extensions of the DSL are configurable again to reflect scientific concepts in the
domain. We expect the DSL is developed in a co-design fashion between scientist and scientific programmers
like done for, e.g., GGDML. For example, the language extensions include type specifiers that tell some hint
about a variable, e.g., that it is defined over a three-dimensional grid, which reflects a scientific attribute. The
same is with the iterator extension which tells that some computation is to be applied over a set of elements of
a grid, which is a scientific abstraction.
The configuration controls the way the translation tool transforms the code, e.g., how to make use of the
hardware to apply the computation in an iterator statement in parallel on a multicore or manycore architecture.
So, a scientific programmer with expertise in GPUs for example would provide a configuration information that
guides the translation tool to optimally use the GPU’s processing elements to parallelize the traversal of an
iterator statement over the grid elements. That information is differently written by an expert in multicore
architectures to make use of the vector units and multiple cores and caching hierarchies to optimize the code
for multicore processors.
The tool infrastructure is flexible allowing to design alternative DSLs while retaining some core optimizations
that are independent of the frontend GPL and DSL, and the generative backend.

4 Model-Specific Dialects Reviewed

In the first deliverable of this workpackage we discussed the model-specific language extensions that were
developeed based on the requirements of each of the three subject icosahedral models: Dynamico, ICON and
NICAM. The requirements drove the language extensions development effort to provide different constructs to
deliver the needed functionality of the extensions. The extensions included constructs to declare the model’s
grid-bound variables. Those extensions allow the model developer to declare a variable and tell that its values
are discretized over some grid component. The higher-level extensions allowed to abstract the scientific concept
without mentioning how will the variable be allocated or accessed in memory. In contrast, the computational

D1.2 DSL Concepts for Icosahedral Models 4/28

5 GGDML: THE DSL CONCEPTS

implementation details are left to the compilation process. The definition of the grid itself was also one part of
the developed extensions. The dialects included language extensions to define the grids with a set of operators
that enable specifying the dimensions and the ranges.

Among the language extensions that were developed within the model-specific dialects is the iterator construct.
This constructs is an essential part of the extensions to support writing the models’ kernels in an abstract code
with higher-level semantics. The development of the iterator construct abstracts the details of how the kernel
code is applied. It allows the developer to express what code to execute for a kernel, and over which set of grid
elements. The details of the grid elements traversal and the parallelization of the kernel execution and how to
read or write the data of the grid-bound variables are left to the compilation process. An abstract index is used
to refer to variables values over the grid. A set of access operators allow also to refer to related grid elements,
e.g. the neighbors, in a way that still uses the scientific concepts to specify grid elements relationships, instead
of using memory indices to refer to the location of the variable’s value in memory.

The reduction expression also was developed to simplify the coding of the stencil operations. This construct
allows to write a stecil operation with a mathematical operator, e.g. addition, to a specific set of subexpressions
applied repeatidly over a set of related grid elements. Using the access operators along with the reduction
expression provides a good combination to write stencil codes that can be implemented on different kinds of
grids.

5 GGDML: The DSL Concepts

The GGDML DSL has been developed as a set of language extensions to support the development of icosahedral-
grid-based earth system models. The extensions have been developed based on the three icosahedral models
Dynamico, ICON and NICAM which use icosahedral grids. The extensions were basically developed for each of
the three models, while keeping in mind to specify a common set of the suggested extensions as long as possible.
This common set of language extensions serves as the basis for the domain-specific language extensions that we
specified as GGDML. GGDML abstracts the scientific concept of the grid and provides the necessary glue code
like specifiers, expressions, iterator to access and manipulate variables and grids from a scientific point of view.

5.1 The modeling language

The three icosahedral models that were used to guide the development of the language extensions were written
in Fortran. However, the nature of the solution, in which we depend on lifting the level of the semantics that
are used to write the models, allows to use the technique with different languages. That is because generally the
grammars of the programming languages can be extended, and the new rules could exhibit different semantical
features.

The language extensions that we developed for the models which are written in the Fortran language, are usable
in other languages. For example, we have used this set of language extensions to write a testcode which uses
the C language as the basic modeling language. In this case, the application’s code is written mainly with C,
and some parts use the GGDML extensions.

The implementation of the source-to-source translation tools provides the way to allow using the language
extensions to extend a specific modeling language. For example, to process the testcode that we developed
with C and GGDML, a module was developed to handle the grammar of the C language. To use the language
extensions to extend another language, the translation tools implementation needs to support that language.

5.2 Declarations

GGDML offers a set of declaration specifiers that allow the scientists who develop a model to mark a variable
as containing values which are declared over the elements of a specific grid. The specifiers can tell, for example,
that the variable has a value over each cell or edge of the grid. We have previously used the code

REAL , CELL, 3D :: somevar

to declare a variable somevar in the three models with the Fortran language. The same extensions are taken
as part of the domain-specific language extensions. Here is an example of the same declaration also in the C
language.

float CELL 3D somevar;

D1.2 DSL Concepts for Icosahedral Models 5/28

5 GGDML: THE DSL CONCEPTS

Figure 2: Dimension Operators: higher to lower dimensional grids and vice versa

To support the model-specific needs, we still allow using model-specific dialects to be used besides to the
domain-specific language extensions. An example,

REAL , CELL, 3D, HL :: somevar

where we allow using model-specific declaration specifiers besides to the set of specifiers within the domain-
specific language extensions.
To support multi-valued variables, array variables are also possible to use with the GGDML specifiers. An
example from the test application code illustrates this

float CELL 2D somevar[3];

Although GGDML provided a set of basic specifiers, e.g., cells, edges, and vertices for the spatial position of the
variables with respect to the grid, the extensions and the approach in general are designed to support extending
the set of specifiers. This dynamic support for the extensibility of the tool stems from the highly configurable
translation technique.

5.3 Grid Specification

The grid elements which are designated to be traversed while applying a kernel needs some way to be specified.
GGDML provides language extensions to specify such ranges of grid elements. To write such a traversal range
expression we can use predefined grids and a set of operators. The predefined grids are defined in the translation
configurations. The operators allow to derive a range of grid elements from a grid definition to traverse.

5.3.1 The operator *

This operator gives the possibility to increase the dimensionality of the traversal range. We can multiply
an expression with a new dimension to generate a range with additional one more dimension. For example,
assume that the grid gridCELL2D spans the set of the cells on the surface (two dimensioonal grid). Then, the
expression

gridCELL2D * height {0 .. nLevs}

represents the set of the cells in the three-dimensional space. Refer to fig. 2.

5.3.2 The operator /

This operator gives the possibility to decrease the dimensionality of the traversal range. We can divide an
expression by one of its dimension to generate a range with one less dimension. For example, assume that the
grid gridCELL3D spans the set of the cells of the three-dimensioonal grid. Then, the expression

gridCELL3D / height

represents the set of the cells on the two-dimensional surface. Refer to fig. 2.

D1.2 DSL Concepts for Icosahedral Models 6/28

5 GGDML: THE DSL CONCEPTS

5.3.3 The operator |

To use a RANGE with its dimention boundaries modified, we use the operator |. For example, assume we have
the grid gridCELL3D defined with height dimension ranging from 0 to nLevs. If we want to apply a kernel
to the cells of the whole grid except the lowest and the highest levels, we can use the expression

gridCELL3D | height {1 .. nLevs-1}

5.4 Iterator

Besides to the hints on the scientific attributes of the variables provided by the specifiers, GGDML provides
an iterator extension as a way to express the application of a computation over the variables which are defined
over the elements of the grid. The iterator statement comprises an iterator index, which allows to address one
of a specific set of grid elements that are specified with a grid-specifying expression. For example, to address
the cells of the three-dimensional grid. To define the set of elements over which the computation that is defined
by the iterator is intended to be applied, the iterator statement comprises a special expression, which is another
extension that GGDML provides as discussed in section 5.3. Those expressions specify a set of elements of a
grid through the use of grid definition operators. The code example at the end of this section illustrates the
idea.

5.5 Variable References

The index that is used to write the iterator represents an abstraction of a scientific concept that allows to refer
to a variable at a grid element, however it does not imply any information where and how the values of the
variable are stored in memory. To allow the reference to related grid elements easily, GGDML provides a basic
set of operators. However, again this set is not a limited constant set, as the configurability of the translation
process allows to dynamically define any operators that the developers wish to have. For example, the basic
set of operators that GGDML provides includes the operator cell.above to refer to the cell above the cell that
is being processed. Operators like cell.neighbor hide the indirect indices that are used in unstructured grids
to refer to the related grid elements, e.g., neighbors or cell edges. Such operators abstract again the scientific
concepts of the element relationships. They do not imply any information about the how the data are accessed
or where they are stored.

5.6 Reduction Expressions

GGDML provides also a reduction expression that allows to simplify the coding of the computations that are
applied within an iterator statement. The reduction expression removes code redundancy which happens so
frequently within stencil codes, and, at the same time, allows to code sections independent of the grid type and
the resulting numbers of neighbors.

To illustrate the use of GGDML, the following test code snippet demonstrates the use of the specifiers:

extern GVAL EDGE 3D gv_grad;

extern GVAL CELL 2D gv_o8param [3];

extern GVAL CELL 3D gv_o8par2;

extern GVAL CELL 3D gv_o8var;

The GVAL is a C-compiler define and we define it as float or double1. The specifiers are used as any other C
specifier like extern. The following code demonstrates an iterator statement:

FOREACH cell IN grid|height {1..(g->height -1)}

{

GVAL v0 = REDUCE(+,N={0..2} ,

gv_o8param[N][cell] * gv_grad[cell.edge(N)]);

GVAL v1 = REDUCE(+,N={0..2} ,

gv_o8param[N][cell] * gv_grad[cell.edge(N).below()]);

gv_o8var[cell] = gv_o8par2[cell]* v0

+ (1-gv_o8par2[cell]) * v1;

}

1In the future, we will support a flexible precision of different variables that can be defined at compile time.

D1.2 DSL Concepts for Icosahedral Models 7/28

6 HYBRID FORTRAN AND ASUCA

The iterator’s grid expression here uses the GGDML grid expression modifier operator | to traverse the cells of
the three-dimensional grid with the height dimension overridden with the boundaries 1 to the grid height -1.
We can write any general-purpose language code within the iterator as a computation that will be applied over
the specified grid elements. The REDUCE expression is used as follows: the value of v0 will be assigned the
sum of the weighted values of the variable gv grad multiplied by gv o8param over the three edges of the cell in
a triangular grid. We see here the use of multiple access operators cell.edge(N).below() to access the cell below
a neighboring cell.

6 Hybrid Fortran and ASUCA

Hybrid Fortran has been developed as a method for porting structured grid Fortran applications to GPU. In
recognition of the advantages and disadvantages of stencil DSL- and directive-based methods (as discussed in
the WACCPD 2017 proceedings paper [MA18a]) we have combined the advantages of both by employing the
following characteristics in our approach:

1. it does abstract the parallel loops in order to achieve multiple parallelization granularities with the same
code,

2. it does not abstract the point-wise code (i.e. the loop bodies) - allowing for code reuse,

3. it does separate the memory layout as defined in the user code from the layout that is effectively imple-
mented for each architecture.

Hybrid Fortran is an open-source framework and can be accessed together with a library of sample applications2.

In this Section we discuss how these characteristics have been achieved. Subsection 6.1 describes our approach
to parallelization and granularity in Hybrid Fortran, while Subsection 6.2 discusses and compile-time defined
memory layout and device memory handling. This discussion is based on relevant extracts from the proceedings
of WACCPD 2017 [MA18a].

6.1 Parallel Loop Abstraction

Consider the following kernel from JMA’s ASUCA reference implementation. As part of the dynamical core it
is executed within the second-order Runge-Kutta scheme with high time resolution. It applies lateral and upper
damping to ASUCA’s grid point values.

Listing 1: Lateral and upper damping kernel applied to grid point values.

!$OMP PARALLEL DO

do j = ny_mn , ny_mx

do i = nx_mn , nx_mx

do k = nz_mn , nz_mx

dens_ptb_damp(k,i,j) = &

& mtratio_bnd * (dens_ref_f(k,i,j) + dens_ptb_bnd(k,i,j,1)) &

& + tratio_bnd * (dens_ref_f(k,i,j) + dens_ptb_bnd(k,i,j,2)) &

& - dens_ref_f(k,i,j)

end do

end do

end do

!$OMP END PARALLEL DO

Using Hybrid Fortran we replace the OpenMP directives, as well as the loop instructions to be parallelized,
with our parallelization DSL:

Listing 2: Lateral and upper damping kernel, modified with Hybrid Fortran.

@parallelRegion{ &

& domName(i,j), domSize(nx_mn:nx_mx ,ny_mn:ny_mx), &

& startAt(nx_mn ,ny_mn), endAt(nx_mx ,ny_mx), template(TIGHT_STENCIL) &

& }

do k = nz_mn , nz_mx

dens_ptb_damp(k,i,j) = &

& mtratio_bnd * (dens_ref_f(k,i,j) + dens_ptb_bnd(k,i,j,1)) &

& + tratio_bnd * (dens_ref_f(k,i,j) + dens_ptb_bnd(k,i,j,2)) &

& - dens_ref_f(k,i,j)

2Please refer to https://github.com/muellermichel/Hybrid-Fortran.

D1.2 DSL Concepts for Icosahedral Models 8/28

https://github.com/muellermichel/Hybrid-Fortran

6 HYBRID FORTRAN AND ASUCA

end do

@end parallelRegion

We therefore have an explicit distinction between loops that are treated as parallelizeable (and are thus restricted
in their access patterns, i.e. loop carried dependencies are not supported) and loops that are always executed
sequentially. The attributes domName and domSize specify the relevant domain iterators and the domain size
relevant to data objects accessed within the parallel region (this relevancy will later be discussed in more detail
in Section 6.2). The attributes startAt and endAt explicitly state the region boundaries, which can be a subset
of the domain size (however, if omitted, the domain size is also assumed as the region boundary).

For CPU targets, Hybrid Fortran generates an OpenMP code version very similar to the reference code shown
in Listing 13, with multi-core parallelization applied to the outermost loop. For GPU targets it defaults to
CUDA Fortran kernels (thus generating all the necessary host- and device code boilerplate and data copy
operations) with an option to use OpenACC kernels with CUDA compatible data structures (device pointers)4.
The attribute template specifies a macro suffix used for the generated block size parameters - this allows a
central configuration for the block sizes used in an application, rather than leaking this architecture-specific
optimization to the user code in each kernel. If omitted, configurable default block sizes are used.

simulation
 for t ∈ [0,tend]:

routine

loop repeating
.. statements ..
for each x ∈ [a, b]

Legend

lateral/upper boundary damp.
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:
 for k ∈ [2,nz-1]:
 .. pointwise process ..

physics run
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:

shortwave rad.
 for k ∈ [1,nz]:
 .. pointwise process ..

surf. flux
 .. pointwise process ..

call

for x ∈ [a, b]:
 .. statements ..

p.b. phi calc
 .. pointwise process ..

…
dycore

…
radiation

…surface

planetary boundary…

Figure 3: Simplified code structure of ASUCA.

The main advantage of this parallelization DSL is the following: replacing parallelizeable loops with the
@parallelRegion construct allows the user to specify multiple granularities in the same code. Consider
ASUCA’s code structure, shown in simplified form in Figure 3. It shows two selected kernels and their embed-
ding in the call graph - the lateral and upper boundary damping already discussed in this section, as well as the
physics kernel. Many physical processes are called within this single kernel (of which three sample processes are
depicted here). This code therefore has a very coarse granularity, which is problematic on GPU as discussed in
the WACCPD 2017 proceedings paper [MA18a].

With Hybrid Fortran we can solve this problem as follows: An additional appliesTo attribute in the @parallelRegion
statement allows the user to selectively apply parallel regions to either CPU or GPU. Applying the paralleliza-
tion at different granularities therefore becomes possible5, by enabling user-steered kernel fission. Figure 4
shows the resulting code structure, with the physics run being split into many kernels for GPU while remaining
a single coarse grained kernel for CPU. The later Listing 4 gives an example of how such a kernel fission works
in practice.

6.2 Compile-time Defined Memory Layout and Device Data Region

As discussed in the WACCPD 2017 proceedings paper [MA18a], it is necessary to consider two major aspects for
implementing the memory layout: storage order on one hand and the compile-time defined granularity requiring

3Privatization is the main difference: Hybrid Fortran generated OpenMP code uses “firstprivate” as the default policy with an
explicit “shared” clause for all arrays used in the kernel.

4OpenACC is mainly used for reduction support - Hybrid Fortran does not automatically generate reduction kernels, however
it supports the “reduce” clause, which is forwarded to the generated OpenMP or OpenACC kernels.

5thus obviating the need for code duplication and/or deep inlining of call trees

D1.2 DSL Concepts for Icosahedral Models 9/28

6 HYBRID FORTRAN AND ASUCA

simulation
 for t ∈ [0,tend]:

routine

loop repeating
.. statements ..
for each x ∈ [a, b]

Legend

lateral/upper boundary damp.

 for k ∈ [2,nz-1]:
 .. pointwise process ..

physics run

shortwave rad. 

 for k ∈ [1,nz]:
 .. pw. proc.

surf. flux

 .. pw. proc.call

for x ∈ [a, b]:
 .. statements ..

CPU&GPU

i,j ∈
[1,nx],
[1,ny]

CPU

i,j ∈
[1,nx],
[1,ny]

GPU

i,j ∈
[1,nx],
[1,ny]

GPU

i,j ∈
[1,nx],
[1,ny]

p.b. phi calc

 .. pw. proc.

GPU

i,j ∈
[1,nx],
[1,ny]

execute
.. statements ..
in parallel for each
i,j ∈ [1,nx], [1,ny]  
if the executable is
compiled for CPU.
Otherwise run
.. statements.. a single
time.

CPU

i,j ∈
[1,nx],
[1,ny]

..
st

at
em

en
ts

 ..
…

dycore

…
radiation

…surface

planetary boundary…

Figure 4: Simplified code structure of ASUCA using Hybrid Fortran.

a varying dimensionalities of data objects on the other. Part of Hybrid Fortran is an additional language
extension, the @domainDependant construct, as a declarative way for the user to specify additional required
information concerning data objects. This concerns memory layout as well as device memory operations, which
will be discussed in this section.

6.2.1 Storage Order

Revisiting the code sample from Section 6.1, the following Listing shows the specification of the routine imple-
menting the discussed lateral and upper damping kernel:

Listing 3: Routine implementing the lateral and upper damping kernel with Hybrid Fortran.

subroutine lateral_and_upper_damping ()

use ref , only : dens_ref_f

use svar , only : dens_ptb_damp

! ... further imports omitted

implicit none

@domainDependant{ &

& attribute(autoDom , present), &

& accPP(AT_TIGHT_STENCIL), domPP(DOM_TIGHT_STENCIL) &

& }

dens_ref_f , dens_ptb_damp

@end domainDependant

@domainDependant{ &

& attribute(autoDom , present), &

& accPP(AT4_TIGHT_STENCIL), domPP(DOM4_TIGHT_STENCIL) &

& }

dens_ptb_bnd

@end domainDependant

! ... initialisation of tratio_bnd and mtratio_bnd omitted

! ... kernel omitted (already shown in listing 1.2)

end subroutine

This shows the specification of the local module data object dens_ptb_bnd (density perturbation in the boundary
layer) as well as the external module data objects dens_ref_f (reference density) and dens_ptb_damp (density
perturbation in ASUCA grid).

D1.2 DSL Concepts for Icosahedral Models 10/28

6 HYBRID FORTRAN AND ASUCA

The autoDom attribute is used to delegate the dimensions setup to the data object specification parser (which
gathers this information in a separate pass from the source modules, here ref and svar), rather than having
the user specify the dimensions explicitly again in the @domainDependant construct. The attributes accPP and
domPP are employed to specify the macro names used to implement the dimension ordering for accesses and
specification parts, respectively. These macros wrap all dimension lists in access expressions and specifications
of respective data objects in the generated code. When accPP and domPP attributes are omitted, default macro
names are used (for a code example after this conversion please refer to Listing 6). In case of Listing 3 we use
explicit macro names for the dynamical core since the default macros are already used with different assumptions
for the physical processes (see the paragraph on “Dimensionality Changes” below).

6.2.2 Device Data Region

Similar to OpenACC, in Hybrid Fortran we implement data regions by adding state attributes to data objects.
The present attribute, shown in Listing 3, indicates that the respective objects are located on the device in
case of GPU compilation. Analogous transferHere attributes are used in the main simulation routine in order
to instruct Hybrid Fortran to implement the memory copy operations to- and from the device, once at the
beginning and end of the simulation. For dummy variables with specified intent, Hybrid Fortran will use the
Fortran intent information to determine the correct copy operation6, which minimizes the potential for bugs in
comparison to OpenACC’s explicit copyIn, copyOut and copy clauses. Halo region updates, required for every
timestep, are implemented explicitly in code sections guarded from CPU compilation.

6.2.3 Dimensionality Changes

Due to the compile-time defined parallelization granularity, discussed in Section 6.1, it is necessary to modify the
dimensionality of data objects in certain cases in the source generation. This requires hints from the framework
user. Consider the following surface flux code snippet:

Listing 4: Surface flux code snippet.

lt = tile_land

if (tlcvr(lt) > 0.0 _r_size) then

call sf_slab_flx_land_run(&

! ... inputs and further tile variables omitted

& taux_tile_ex(lt), tauy_tile_ex(lt) &

&)

u_f(lt) = sqrt(sqrt(taux_tile_ex(lt) ** 2 + tauy_tile_ex(lt) ** 2))

else

taux_tile_ex(lt) = 0.0 _r_size

tauy_tile_ex(lt) = 0.0 _r_size

! ... further tile variables omitted

end if

! ... sea tiles code and variable summing omitted

Since this process is defined inside the call graph of the physics kernel, as shown in Figure 3, the relevant 2D-
and 3D grid point values are already sliced and passed in as scalars or 1D-arrays, that is, data parallelism is not
exposed at this level. Hybrid Fortran allows implementing this as a fine-grained kernel (as outlined in Figure
4) without modifying the computational user code, as demonstrated in the following snippet:

Listing 5: Surface flux code snippet with Hybrid Fortran.

@domainDependant{domName(i,j), domSize(nx,ny), attribute(autoDom , present)}

tlcvr , taux_tile_ex , tauy_tile_ex , u_f

@end domainDependant

@parallelRegion{appliesTo(GPU), domName(i,j), domSize(nx,ny)}

lt = tile_land

if (tlcvr(lt) > 0.0 _r_size) then

call sf_slab_flx_land_run(&

! ... inputs and further tile variables omitted

& taux_tile_ex(lt), tauy_tile_ex(lt) &

&)

u_f(lt) = sqrt(sqrt(taux_tile_ex(lt) ** 2 + tauy_tile_ex(lt) ** 2))

else

6Simple examples of this feature can be found in https://github.com/muellermichel/Hybrid-Fortran/blob/v1.00rc10/

examples/demo/source/example.h90.

D1.2 DSL Concepts for Icosahedral Models 11/28

https://github.com/muellermichel/Hybrid-Fortran/blob/v1.00rc10/examples/demo/source/example.h90
https://github.com/muellermichel/Hybrid-Fortran/blob/v1.00rc10/examples/demo/source/example.h90

6 HYBRID FORTRAN AND ASUCA

taux_tile_ex(lt) = 0.0 _r_size

tauy_tile_ex(lt) = 0.0 _r_size

! ... further tile variables omitted

end if

! ... sea tiles code and variable summing omitted

@end parallelRegion

Using our parallelization DSL to provide additional dimensionality information, Hybrid Fortran is able to rewrite
this code into a 2D kernel. Dimensions missing from the user code are inserted at the beginning of the dimension
lists in access expressions and data object specifications. As an example, the expression u_f(lt) is converted to
u_f(AT(i,j,lt)), employing the default ordering macro already mentioned in the paragraph “Storage Order”.
Dimensions are extended whenever there is a match found for domName or domSize information between data
objects and parallel regions within the same routine or in routines called within the call graph of the same
routine. It is therefore necessary for Hybrid Fortran to gather global information about the application before
implementing each routine.

6.3 Transformed Code

Revisiting Listing 5, the following code is generated when applying Hybrid Fortran with the OpenACC backend:

Listing 6: Surface flux code snippet after conversion with OpenACC backend.

!$acc kernels deviceptr(taux_tile_ex) deviceptr (tauy_tile_ex) &

!$acc& deviceptr (tlcvr) deviceptr (u_f)

!$acc loop independent vector(CUDA_BLOCKSIZE_Y)

outerParallelLoop0: do j=1,ny

!$acc loop independent vector(CUDA_BLOCKSIZE_X)

do i=1,nx

! *** loop body *** :

lt = tile_land

if (tlcvr(AT(i,j,lt))> 0.0 _r_size) then

call sf_slab_flx_land_run (&

! ... inputs and further tile variables omitted

& taux_tile_ex(AT(i,j,lt)), tauy_tile_ex(AT(i,j,lt)) &

&)

u_f(AT(i,j,lt))= sqrt(sqrt(taux_tile_ex(AT(i,j,lt))** 2 + &

& tauy_tile_ex(AT(i,j,lt))** 2))

else

taux_tile_ex(AT(i,j,lt))= 0.0 _r_size

tauy_tile_ex(AT(i,j,lt))= 0.0 _r_size

! ... further tile variables omitted

end if

! ... sea tiles code and variable summing omitted

end do

end do outerParallelLoop0

!$acc end kernels

Device data is interoperable with the CUDA Fortran backend, thus device pointers are used instead of passing
the management to OpenACC. OpenACC directives together with this data type can thus be directly used in
the user code as well, i.e. it remains interoperable with device code generated by Hybrid Fortran.

As noted in Section 6.2, storage ordering macros (here AT()) are applied to all array access statements. For the
thread block setup, the configurable default sizes CUDA_BLOCKSIZE_X/Y are used since no template is specified
for the parallel region at hand. Parallel region loops (here for indices i and —verb—j— are set up explicitly to
parallelize. Other loops, such as the loop over k, use a !$acc loop seq directive to explicitly avoid parallization
and give the framework user full expressiveness over the desired granularity.

Applying CUDA Fortran backend to the same user code produces the following host code (here shown together
with the routine header and footer):

Listing 7: Surface flux host code snippet after conversion with CUDA Fortran backend.

subroutine hfd_sf_slab_flx_tile_run(&

! ... inputs omitted

&)

use cudafor

type(dim3) :: cugrid , cublock

integer (4) :: cugridSizeX , cugridSizeY , cugridSizeZ , &

& cuerror , cuErrorMemcopy

! ... other imports and specifications omitted

D1.2 DSL Concepts for Icosahedral Models 12/28

6 HYBRID FORTRAN AND ASUCA

cuerror = cudaFuncSetCacheConfig(&

& hfk0_sf_slab_flx_tile_run , cudaFuncCachePreferL1)

cuerror = cudaGetLastError ()

if(cuerror .NE. cudaSuccess) then

! error logging omitted

stop 1

end if

cugridSizeX = ceiling(real(nx) / real(CUDA_BLOCKSIZE_X))

cugridSizeY = ceiling(real(ny) / real(CUDA_BLOCKSIZE_Y))

cugridSizeZ = 1

cugrid = dim3(cugridSizeX , cugridSizeY , cugridSizeZ)

cublock = dim3(CUDA_BLOCKSIZE_X , CUDA_BLOCKSIZE_Y , 1)

call hfk0_sf_slab_flx_tile_run <<< cugrid , cublock >>>(&

! ... inputs and further tile variables omitted

& nx, ny, tile_land , u_f , tlcvr & ! required data objects are

& taux_tile_ex , tauy_tile_ex & ! automatically passed to kernel

&)

cuerror = cudaThreadSynchronize ()

cuerror = cudaGetLastError ()

if(cuerror .NE. cudaSuccess) then

! error logging omitted

stop 1

end if

end subroutine

The prefix hfd_ is added to host routines that use device data. Hybrid Fortran also duplicates the code for
a pure host version of these routines (without a name change in order to remain interoperable with code that
is not passed through Hybrid Fortran). In contexts where the data is not residing on the device, such as the
setup part of an application, Hybrid Fortran automatically chooses the host version when generating the call
statements at compile-time. Code residing within parallel regions is moved within a separeted kernel routine
(using prefix hfki_ with i representing the kernel number). In case of the surface flux sample shown here, the
kernel routine is generated as follows:

Listing 8: Surface flux device code snippet after conversion with CUDA Fortran backend.

attributes(global) subroutine hfk0_sf_slab_flx_tile_run (&

! ... inputs and further tile variables omitted

&, nx, ny , tile_land , u_f , tlcvr &

&, taux_tile_ex , tauy_tile_ex &

&)

use cudafor

use pp_vardef ! defines r_size

implicit none

real(r_size), device :: u_f(DOM(nx,ny,ntlm))

real(r_size), device :: tlcvr(DOM(nx ,ny,ntlm))

real(r_size), device :: taux_tile_ex(DOM(nx,ny,ntlm))

real(r_size), device :: tauy_tile_ex(DOM(nx,ny,ntlm))

integer (4), value :: lt

integer (4), value :: nx

integer (4), value :: ny

integer (4), value :: tile_land

! ... other imports and specifications omitted

i = (blockidx%x - 1) * blockDim%x + threadidx%x + 1 - 1

j = (blockidx%y - 1) * blockDim%y + threadidx%y + 1 - 1

if (i .GT. nx .OR. j .GT. ny) then

return

end if

! *** loop body *** :

lt = tile_land

if (tlcvr(AT(i,j,lt))> 0.0 _r_size) then

call hfd_sf_slab_flx_land_run(&

! ... inputs and further tile variables omitted

taux_tile_ex(AT(i,j,lt)), tauy_tile_ex(AT(i,j,lt)) &

&)

! ... rest of loop body already shown in listing 1.6

end subroutine

The specification part of these kernels is automatically generated, applying device state information and con-
verting input scalars to pass-by-value7, among other transformations.

7reduction kernels are thus not supported with this backend - we use the OpenACC backend selectively for this purpose, see

D1.2 DSL Concepts for Icosahedral Models 13/28

6 HYBRID FORTRAN AND ASUCA

It is notable that CUDA Fortran requires a fairly large amount of boiler plate code for grid setup, iterator
setup, host- and device code separation as well as memory- and error handling - Hybrid Fortran allows the
user to pass on the responsibility for that to the framework. Compared with the code generated by OpenACC
however (assembly-like CUDA C or NVVM intermediate representation), the Hybrid Fortran generated CUDA
Fortran code remains easily readable to programmers experienced with CUDA. Experience shows that this is a
productivity boost, especially in the debugging and manual performance optimization phase of a project.

Regarding the OpenMP backend, since the surface flux example is parallelized at a much more coarse-grained
level for CPU, the generated CPU code for the sample at hand is a one-to-one copy of the user code shown
earlier in Listing 4. The parallelization is generated at a higher level in the call graph (by use of a parallel
region construct with appliesTo(CPU) clause) as follows:

Listing 9: Parallelization of physical processes on CPU.

!$OMP PARALLEL DO DEFAULT(firstprivate)

!$OMP& SHARED(... inputs and outputs omitted ...)

outerParallelLoop0: do j=1,ny

do i=1,nx

call physics_main(i, j, &

! ... inputs and outputs omitted

&)

end do

end do outerParallelLoop0

!$OMP END PARALLEL DO

6.4 Code Transformation Method

maketransform

parse

F90	Fortran

Hybrid Sources

global
information

executable

analyze

F90	Fortranimplemented
Fortran

hybrid file python

GNU Make
legend

file with
CPU+GPU
version

Build Dependencies

Build Configuration

user facing

Macro Definitions

global information -
applied to architecture

output

input
machine
facing

Figure 5: Hybrid Fortran software components and build workflow.

In this section we discuss code transformation method involved in implementing Hybrid Fortran’s characteristics
described earlier. This process is applied transparently for the user, i.e. it is applied automatically by the

also the discussion in the footnotes to Section 6.1.

D1.2 DSL Concepts for Icosahedral Models 14/28

7 EXPERIMENTS

means of a provided common Makefile8. Figure 5 gives an overview of the process and the components involved.
We discuss this process in order of execution - each of the following enumerated items corresponds to one
transformation phase:

1. To simplify the parsing in subsequent phases, Fortran continuation lines are merged.

2. Facilitating later phases, the application’s call graph and parallel region directives are parsed globally
(“parse” phase in Figure 5).

3. Using the appliesTo information in kernels and the call graph, the position of each routine in relation to
kernels is computed. Possible positions are “has kernel(s) in its caller graph”, “contains a kernel itself”
and “is called inside a kernel” (“analyze” phase in Figure 5).

4. In two passes, module data object specifications are parsed and then linked against all routines with
imports of such objects, together with the locally defined objects.

5. A global application model is generated, with model classes representing the modules, routines and code
regions. This model can be regarded as a target hardware independent intermediate representation.

6. Each routine object is assigned an implementation class depending on the target architecture9. For each
coding pattern, a separate class method of the implementation class is called by the model objects - e.g.
CUDA parallelization boilerplate is generated. Using the previously gathered global kernel positioning
and data object dimension information, data objects are transformed according to the behavior discussed
in Section 6.2. Implementation class methods return strings that are concatenated by the model objects
into source files (“transform” phase in Figure 5).

7. Code lines are split using Fortran line continuations in order to adhere to line limits imposed by Fortran
compilers.

8. Macros generated by Hybrid Fortran (to implement storage reordering and configurable block sizes) are
processed by using the GNU compiler toolchain. Subsequently, a user specified compiler and linker is
employed in order to create the CPU and GPU executables. A common makefile is provided with the
framework, however the build dependency graph is user-provided in the format of makefile rules10 (“make”
phase in Figure 5).

This process makes it possible to have a unified source input and create executables targeted for either multi-core
CPU or many-core GPU.

7 Experiments

In this section we discuss some experiments that have been done to evaluate the achieved work that has been
already finished under this workpackage.

7.1 GGDML

We have already done some experiments to evaluate our approach. First, we describe the application that has
been used as a testbed code. Then, the machines that have been used to run the tests are described. Finally,
we discuss the tests results.

7.1.1 Test Application

A testbed code in the C-programming language is used to test the approach. The application is an icosahedral-
grid-based code, that maps variables to the cells and edges of a three-dimensional grid. The two dimensional
surface is mapped to one dimension using a Hilbert space-filling-curve. The curve is partitioned into blocks.
The testbed runs in time steps during each of which the model components are called to do their computations –
a component can be considered a scientific process like radiation. Each component provides a compute function
that calls the necessary kernels that are needed to update some variables. All the kernels are written with the
GGDML extensions. The translation tool is called to translate the application’s code into the different variants
to run on the test machines with different memory layouts.

8See also the “Getting Started” section in https://github.com/muellermichel/Hybrid-Fortran/blob/v1.00rc10/doc/

Documentation.pdf.
9Hybrid Fortran allows the user to switch between varying backend implementations per routine, such as OpenACC and CUDA

Fortran - the user specified information as well as the defaults given by the build system call thus steers this implementation class.
10alternatively, a dependency generator script can be configured as well

D1.2 DSL Concepts for Icosahedral Models 15/28

https://github.com/muellermichel/Hybrid-Fortran/blob/v1.00rc10/doc/Documentation.pdf
https://github.com/muellermichel/Hybrid-Fortran/blob/v1.00rc10/doc/Documentation.pdf

7 EXPERIMENTS

Table 1: Single Node CPU with OpenMP

Serial
2

Threads
4

Threads
8

Threads
16

Threads
32

Threads
3D 1.97 3.74 7.05 13.78 24.15 46.94

3D-1D 1.99 3.95 7.59 14.43 24.98 48.87

Table 2: Single node GPU

Serial
P100 V100

performance
GF/s

Memory throughput
GB/s

performance
GF/s

Memory throughput
GB/s

read write read write
3D 1.97 220.38 91.34 56.10 854.86 242.59 86.98

3D-1D 1.99 408.15 38.75 43.87 1240.19 148.49 57.12

7.1.2 Test System

Two machines have been used to run the tests. The first is the supercomputer Mistral at the German Climate
Computing Center (DKRZ). Mistral offers dual socket Intel Broadwell nodes (Intel Xeon E5-2695 v4 @ 2.1GHz).
The second machine is NVIDIA’s PSG cluster, where we used the Haswell CPUs (Intel(R) Xeon(R) CPU E5-
2698 v3 @ 2.30GHz). The GPU tests were run on NVIDIA’s PSG cluster on two types of GPUs: P100 and
V100.
To compile the codes and run them on Mistral we used OpenMPI version 1.8.4 and GCC version 7.1. On the
PSG cluster we have used the OpenMPI version 1.10.7 and the PGI compiler version 17.10.

7.1.3 Results

In this experiment, we evaluate the application’s performance for a single node. First, we translate the source
code into a serial code and run it on the PSG cluster to evaluate the performance improvements on CPU and
GPU. We translated it again for OpenMP to run on the Haswell multicore processors. The OpenMP version
has been run with different numbers of threads. The application was also translated to run on the two types of
GPUs; the P100 and the V100. We tested two memory layouts:

• 3D: a three-dimensional addressing with three-dimensional array

• 3D-1D: a transformed addressing that maps the original three-index addresses into an 1D index.

All the tests have been run with a 3D grid of 1024x1024x64 for 100 time steps using 32-bit floating point
variables. The results for running the OpenMP tests are shown in Table 1
While the change between the two chosen memory layouts have not shown much impact on the performance
on the Haswell processor, we see the impact clear when running the same code on the GPUs. The results for
running the same code with the two different memory layouts on both GPU machines are shown in Table 2. We
also include the measured memory throughput into the table, which we measure with NVIDIA’s ’nvprof’ tool.
The change of the memory layout means transforming the addresses from a three-dimensional array indices to a
one-dimensional array index, which means cutting down the amount of the data that needs to be read from the
memory in each kernel. The caching hierarchy of the Haswell processor hides the impact by using the cached
values of the additional data that needs to be read in the three-dimensional indices. However, the use of the
code transformation to use the one-dimensional index while translating the code to run on the GPU allowed to
get the performance gain.

To evaluate the scalability of the testbed code on multiple nodes with GPUs, we have translated the code for
GPU-accelerated machines using MPI and we have run it on 1-4 nodes. Figure 6 shows the performance of
the application when it is run on the P100-accelerated machines. The figure shows the performance achieved
in both cases when measuring the strong and the weak scalability. The performance has been measured to
find the maximum achievable performance when no halo exchange is performed, and to find the performance
of an optimized code with halo exchange. The performance gap reflects the cost of the data movement from
and into the GPU’s memory as limited by the PCIe3 bus and along the network using Infiniband. This gap
differs according to the data placement of the elements that need to be communicated to other nodes. Thus,
putting the elements in an order in which halo elements are closer to each other in memory reduces the time
for the data cop from and into the GPU’s memory. The scalability (both strong and weak) is shown in Table 3.

D1.2 DSL Concepts for Icosahedral Models 16/28

7 EXPERIMENTS

Figure 6: P100 scalability

Table 3: P100 scalability

Number
of

nodes

strong scaling weak scaling
without

communication
with
communication

ratio
without

communication
with
communication

ratio

2 1.97 1.09 55% 2.07 1.43 70%
3 2.82 1.21 43% 3.05 1.73 58%
4 3.65 1.47 40% 4.01 2.60 65%

The table shows how the performance improves with the nodes. Also, it shows the ratio that is achieved when
running the code with respect to the maximum performance gain (that is achieved without halo exchange). The
computing time spent each time step for the whole grid (1024x1024x64 elements) is measured to be 8.34ms.
The communication times spent during each time step are shown in Table 4.
The communication times between different numbers of MPI processes running in different mappings over
nodes are recorded, Table 4 shows the measured values on the PSG cluster. We have run the application in
2,4,8,16,32,64, and 128 processes over 1,2, and 4 nodes. For multiple nodes, we mapped the MPI processes
to the nodes in three ways: cyclic, blocked with balanced numbers of processes on each node, and in blocks
where the processes subsequently fill the nodes. The time was measured over 1000 time steps in each case. The
measured times show that optimizing the communication time is essential to achieve better performance, and
that optimizing the data movement from/into the GPU’s memory is essential to minimize the halo exchange
time.

Table 4: Communication time per time step (in ms)

processes 1
2 nodes 4 nodes

cyclic
block

(balanced)
block

(unbalanced)
cyclic

block
(balanced)

block
(unbalanced)

2 1.21 1.18 1.11 1.21
4 1.03 0.93 0.86 1.18 0.88 0.90 1.24
8 1.00 0.84 0.77 1.52 0.77 0.75 1.58
16 0.80 0.83 0.56 1.59 0.69 0.54 1.60
32 1.29 0.77 0.64 1.26 0.69 0.51 1.24
64 1.33 0.82 0.78 0.84 0.52 0.77
128 1.48 1.32 1.23

D1.2 DSL Concepts for Icosahedral Models 17/28

7 EXPERIMENTS

Figure 7: MPI process scalability

(a) Strong Scaling Efficiency (b) Weak Scaling Efficiency

Figure 8: Scaling Efficiency

To evaluate the scalability of the generated code with multiple MPI processes on CPU nodes, we have run it
with over 1,4,8,12,16,20,24,28,32,36,40, and 48 nodes. The performance is shown in Figure 7.
Both the strong and the weak scalability efficiency are calculated according to the equations

Efficiencystrong = T1/(N · TN) · 100% (1)

Efficiencyweak = T1/TN · 100% (2)

and the results are shown in Figure 8. The efficiency is slightly below 100% up to 48 MPI processes for the weak
scaling measurements. The Strong scaling measurements decrease from 100% at one process to about 70% at
48 processes in a linear trend.
The performance of the generated code that uses OpenMP with the MPI is also evaluated. The code has been
generated for OpenMP and MPI and run with multiple numbers of nodes and using different numbers of cores
on each node. We have run the code on 1,4,8,12,16,20,24,28,32,36,40 and 48 nodes and 1,2,4,8,16,32, and 36
cores per node. The measurements are shown in Figure 9.

D1.2 DSL Concepts for Icosahedral Models 18/28

7 EXPERIMENTS

Figure 9: MPI+OpenMP scalability

7.2 Hybrid Fortran and ASUCA

The following presents performance results from our ACM paper [MA18b] as well as productivity results from
the WACCPD 2017 proceedings [MA18a].

7.2.1 Productivity

Figure 10: Flow of code lines from reference implementation to Hybrid ASUCA by number of lines of code.

To examine the productivity of our solution we have analyzed the code and compare it against the reference
implementation11. The high-level results of this analysis is shown in Figure 10. In order to gain GPU support

11Since the input to this analysis is the closed source ASUCA codebase, full reproducibility cannot be provided in this context.
However the intermediate data, the method employed to gather this data as well as a sample input is provided and documented in
https://github.com/muellermichel/hybrid-asuca-productivity-evidence/blob/master/asuca_productivity.xlsx.

D1.2 DSL Concepts for Icosahedral Models 19/28

https://github.com/muellermichel/hybrid-asuca-productivity-evidence/blob/master/asuca_productivity.xlsx

7 EXPERIMENTS

in addition to the already existing multi-core and multi-node parallelization, the code has grown by less than
4% in total, from 155k lines of code to 161k. Sanitizing the two code versions (removing white space, comments
and merging continued lines), the code has grown by 12%, from 91k to 102k lines of code. 95% of the sanitized
reference code is used as-is in the new implementation, while 5% or approximately 5k lines of code is replaced
with approximately 15k new code lines.

Figure 11: New code required for Hybrid ASUCA vs. estimate of equivalent OpenACC implementation (LOC
stands for “lines of code”).

Code changes and additions have the largest impact in terms of productivity. We have analyzed the additional
15k lines of code in more detail. Figure 11 shows a breakdown of these changes and compares them to an
estimate of what would be required with an OpenACC-based implementation. The following methodology has
been used for this analysis:

1. for the parallelization- and data layout DSL line count we have used information parsed for Hybrid
ASUCA, as well as the OpenACC backend available in Hybrid Fortran, to acquire an accurate count for
the directives required for an OpenACC-based implementation,

2. since OpenACC does not offer a granularity abstraction, we have used the Hybrid ASUCA’s parsed global
application information to arrive at a set of routines that require a kernel positioning change (see the
discussion in Section 6.4) - the resulting code lines require duplication for the CPU in an equivalent
OpenACC implementation (shown as “CPU-only physics” in figure 11),

3. we have used the OpenACC backend in Hybrid Fortran to count the lines of code where storage order
macros are introduced in order to achieve a compile-time defined data layout.

“Parallelization & data layout DSL” refers to the number of code lines for @parallelRegion and @domainDependant

directives in case of Hybrid Fortran, and OpenACC !$acc directivies in case of OpenACC. Hybrid Fortran re-
places the requirement for code changes to implement a varying data layout (“storage order macros”, 6098 lines
of code, “LOC”) as well as a code duplication for multiple parallelizations with varying granularities (“CPU-only
physics”, 7122 LOC) with a higher number of DSL code lines compared to OpenACC (4398 vs. 2521 LOC).
“Modified data specifications / initializations” (3519 LOC) as well as “routine & call signature” (1381 LOC)
refers to changes applied to the setup of data and call parameter lists, respectively. These changes are necessary
due to device code limitations and optimizations and are largely required for both the Hybrid Fortran version as
well as a potential OpenACC solution, so we use the result from Hybrid ASUCA as an estimate for what would
be required with OpenACC. Finally, one physics module concerning long-wave radiation (2059 LOC), has been
replaced with a version that uses less local memory per thread (a factor of 10 improvement in that regard) to
make it more GPU-friendly. We again estimate that an OpenACC version would have approximately the same
code size.

This result shows that an equivalent OpenACC implementation of ASUCA can be estimated to require ap-
proximately 11k LOC in additional changes compared to the Hybrid Fortran-based implementation. When
comparing to the sanitized reference codebase, an OpenACC user code would require approximately 28% of
code lines to be changed or added, while Hybrid Fortran currently requires 16%.

D1.2 DSL Concepts for Icosahedral Models 20/28

7 EXPERIMENTS

7.2.2 Comparing Hybrid Fortran with OpenACC and Model

This section facilitates the previously discussed reduced weather application in order to compare Hybrid Fortran
with OpenACC and a performance model.

7.2.2.1 Performance Portable Storage Order Table 5 shows the impact, storage order has on execution
time. In the case of the currently discussed application, choosing a sub-optimal storage order impacts CPU
execution time negatively by 35%, while on GPU the slowdown is 7.7x. This verifies the necessity of a flexible
storage order for applications with similar data structures as ASUCA.

Table 5: Influence of Storage Order on Execution Time, nx = ny = nz = 128

IJK Order KIJ Order
CPU Single Core 1.73s 1.28s
GPU (OpenACC) 0.10s 0.77s

(Fastest Implementation)

Table 6: Execution Time with “Naive” Parallelization

nx · ny · nz 1283 2563

CPU Single Core Measurement 1.28s 8.20s
CPU Single Core Model w/ cache 0.74s 5.70s
CPU Single Core Model w/o cache 1.77s 13.91s

CPU 6 Core Measurement 0.40s 4.25s
CPU 6 Core Model w/ cache 0.38 2.84s
CPU 6 Core Model w/o cache 0.87 6.77s

GPU Measurement 163.13s n/a

7.2.2.2 “Naive” Parallelization In order to establish a baseline performance we apply a basic paralleliza-
tion to the reduced weather application with OpenACC and OpenMP directives. Storage order is made variable
across the whole application by using macros for accessing and specifying multi-dimensional arrays. We are
using I-J-K order for GPU and K-I-J order for the CPU implementation. Table 6 shows the resulting CPU
performance from this parallelization.

We conclude that the measured CPU performance is already well within the models with perfect and no cache.
The GPU performance is however very slow - more than 400x slower than the six core CPU version, which is
not in agreement with the models we have constructed. This is to be expected however, since no data region
has yet been defined, without which the data is being copied over the slow PCI express bus for every kernel
invocation. Further discussion for the reduced weather application therefore focuses on GPU performance.

Table 7: Execution Time with Data Region

nx · ny · nz 1283 2563

GPU Measurement 0.095s 0.63s
GPU Model w/ cache 0.027s 0.19s
GPU Model w/o cache 0.087s 0.66s

7.2.2.3 Data Region The amount of I/O to and from the GPU can be greatly reduced by using a data
region in order to avoid host-to-device data copies at every kernel invocation. Table 7 shows the resulting
performance with OpenACC.

7.2.2.4 Block Size As Table 8 shows, up to 38% performance improvement is possible over the version
discussed in the previous paragraph for the OpenACC implementation by changing the default block size using
vector clauses for each parallel loop. PGI accelerator uses a 128×1 block size for its OpenACC implementation
by default while 32×16 has been experimentally determined to be the best block size for this application except
for a small degradation for the smallest measured grid size.

D1.2 DSL Concepts for Icosahedral Models 21/28

7 EXPERIMENTS

Table 8: Block Size Impact on Execution Time

nx · ny · nz 1283 2563 2562 · 512
GPU Automatic Block size 0.095s 0.63s 2.99s

GPU 32 x 16 Block size 0.10s 0.55s 2.16s
GPU Model w/ cache 0.027s 0.19s 0.69s
GPU Model w/o cache 0.087s 0.66 2.60s

Figure 12: Comparing performance with the reduced weather application for handwritten vs. Hybrid Fortran
generated vs. model on 2563 Grid.

7.2.2.5 Performance Comparison Figure 12 shows the performance results for a reduced weather appli-
cation with the Hybrid Fortran based implementation in comparison with performance models models as well
as a pure the OpenMP/OpenACC based approach. For a further discussion of this reduced application and its
models please refer to the ACM TOPC paper [MA18b]). For each of the implementations the highest performing
version (32 x 16 block size with data region) has been selected for this comparison. This shows that measured
CPU performance aligns well in between the two models (with and without cache) while for the TSUBAME
2.5 Kepler based GPU architecture, L1 cache appears to be less effective for this application and the measured
performance is closer to the model without cache. It is noteworthy that the Hybrid Fortran generated code
performs as well or better than the equivalent OpenACC code for both target architectures in this example.

Overall we observe a speedup of 8x for the Hybrid Fortran version vs. 6-core CPU, compared to the speedup
of 7.7x for the OpenACC version. The Hybrid Fortran implementation’s speedup is thus very close to the
bandwidth increase 8.2x between the two architectures.

On CPU the Hybrid Fortran implementation performs the same as the manually coded OpenMP implementa-
tion, which is unsurprising given that the CPU code generated by Hybrid Fortran is practically identical.

7.2.3 Hybrid ASUCA Kernel Performance

Figure 13: Execution time measurements for 75 long time steps of ASUCA executed in four different configu-
rations

In this section, performance results for the Hybrid Fortran implementation of ASUCA (which we call “Hybrid
ASUCA”) are discussed for a 301 x 301 x 58 grid that is small enough for single GPU or single socket execution
with the latest architecture (Tesla P100 on Reedbush-H), yet still allows a useful performance analysis in terms

D1.2 DSL Concepts for Icosahedral Models 22/28

7 EXPERIMENTS

of occupancy. This allows to draw conclusions for the kernel performance as opposed to the communication
overhead (which impacts performance more strongly, the more nodes are used for the same grid size, i.e. when
applying strong scaling as will be shown in Section 7.2.4). Additionally, an older system (TSUBAME 2.5 with
Tesla K20x) is used for comparison purposes. Since the two compared GPUs differ in their available device
memory (16 GB for P100 vs. 6 GB for K20x) we compare four K20x GPUs to one P100.

Figure 13 shows the execution times for this configuration on four hardware/software configurations as listed.
A speedup of 4.9x has been achieved by the port on Kepler GPU vs. Westmere 6-core Xeon X5670. On newer
hardware however (Pascal vs. Broadwell) the speedup has so far been a more modest 3.1x, which is partly
explained by the lower memory bandwidth difference between the two comparisons and the increased caching
performance on Broadwell- versus Westmere CPU architecture (as caching generally has a lower impact on GPU
compared to CPU).

7.2.4 Hybrid ASUCA Strong Scaling GPU Results

Figure 14: Total cloud cover result with ASUCA using a 2km resolution grid with a real world weather situation

Figure 15: Strong scaling speedup on 1581 x 1301 x 58 ASUCA Grid.

Using a full scale production grid, Hybrid ASUCA has been tested on the new Tokyo University cluster “Reed-
bush H” [?]. This cluster has two 18-core Xeon E5-2695 v4 CPUs per node as well as two NVIDIA Tesla P100
GPUs per node. At least seven nodes (14 sockets) or 24 GPUs are required for this test due to the grid’s

D1.2 DSL Concepts for Icosahedral Models 23/28

7 EXPERIMENTS

memory requirements. A visualization of the resulting cloud cover from this simulation is depicted in Figure
14.

Figure 15 shows that 24 GPUs can replace more than 50 18-core CPU sockets. When comparing the same
number of GPUs and CPU sockets, the GPU is up to 76% faster.

58.10
34.02

13.38 20.86

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Compute

Halo Communication

Figure 16: Impact of communication for strong scaling on 1581 x 1301 x 58 ASUCA Grid.

The following factors influence scalability and will need to be improved in order to achieve better strong scaling:

1. MPI communications code has been used as-is, with no further optimizations applied with respect to the
targeted cluster. When testing the impact of communication on performance on TSUBAME 3.0 using
the minimally required 24 GPUs, as shown in Figure 16, communication requires approximately 13.4s or
18.7% of the overall runtime of 71.5s (to compute a 600 seconds simulation of the full regional grid in 2km
resolution). When doubling the number of GPUs this increases to 20.9s while the compute time decreases
from 58.1s to 34.0s, thus the communication then takes 38% of the runtime. Overlapping communication
and computations has been shown to be effective in enabling better scaling by Shimokawabe et al. [?],
thus this approach will be the first step to improve performance at larger scales.

2. Since GPUs require a large enough problem size per chip in order to have a sufficient number of threads
to fill all schedulers, strong scaling is limited when the problem size per GPU becomes too small.

3. In our ASUCA code version, as in the given reference, we do not have a distributed file I/O system as used
in production. Due to the large amount of data, even though for this test the output is only run at the
beginning and end of the simulation, it still has a strong impact on the overall execution time, resulting
in part of the discrepancy between for the speedups between the 301 x 301 and 1581 x 1301 grid sizes.

5.59 5.08

24.77
15.74

4.11

2.07

9.96

7.19

27.06

24.81

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Short Timestep
Dynamics

Precipitation

Long Timestep
Dynamics

Long Timestep
Physics

Other

Figure 17: Impact of modules for strong scaling on 1581 x 1301 x 58 ASUCA Grid.

Figure 17 categorizes the performance impact of the different modules of ASUCA on performance, including
communication. The simulation of fast moving sound- and gravity waves has the highest impact, followed by
radiation- and boundary layer physics. Since the physics calculations do not require communication, the impact
of fast moving dynamics increases with the number of nodes, rendering it the most important optimization
target for larger scale simulations.

D1.2 DSL Concepts for Icosahedral Models 24/28

8 RELATED WORK

8 Related Work

Many research efforts were directed towards solving the problem of performance portability. Approaches range
from using domain libraries, to compiler directives and annotations, to general-purpose language embedded
DSL constructs like C++ template programming, to standalone DSLs that replace general-purpose languages,
and finally to language extensions.

Library approaches provide high-level functions that models can use to perform some computation with high
performance. Bianco et al. [BV12] provide a library for stencil computations. They use generic programming
capabilities of C++ language to provide a solution for regular (structured) grid based applications. The active
library OP2 [MGR+12] provides a framework to generate optimized code for multiple back-ends. It provides
an API to define unstructured meshes and connectivity maps with C/C++ and Fortran. OPS [RMG+14] is
another active library that provides C++ domain specific abstractions for multi-block structured grid based
applications. It uses source-to-source translation to generate platform specific code that makes use of optimized
back-end libraries for different configurations. Tangram [CDRH15] provides optimized code for CPU and GPU
platforms through data-structure-based libraries. Besides, it allows programmers to explicitly specify optimiza-
tions through using rewriting-rules within code. Shimokawabe et al. [SAO14] [SAO16] provide a C++ based
framework that is added to user code to provide performance portability for regular structured grids. Program-
mers provide stencil computations as C++ functions that update grid points, and the framework translates
them to CPU/GPU optimized codes. It also produces any needed CUDA and MPI codes.

Source code preprocessing based solutions use compiler directives to annotate parts of code that is preprocessed
before being submitted to backend compiler. Those solutions use a special front-end compiler/preprocessor
to process annotated code. HMPP [DBB07] uses directives along with a runtime to generate accelerator high
performance code. Parallelization and optimization decisions are provided by source code also in the work
of Christen et al. [CSB11], where they provide a DSL for code generation and auto tuning of stencil codes
for manycore and multicore processor based systems. Mint [UCB11] uses annotations to translate stencil
computations from C to optimized CUDA C. Annotations within the source code drive the optimization process.
In Gung Ho [FGH+13], scientific code is separated into high-level operations acting on whole fields (the algorithm
layer) and low-level operations that explicitly compute with the data (kernels). In between sits a layer of
autogenerated code, driven partly by directives, that handles looping over data and attempts to optimize
performance for different architectures and parallelization strategies. In CLAW [Cla] project, optimization and
implementation details like loop optimization and domain decomposition are explicitly specified with annotations
added within source code.

General-purpose language embedded constructs, like templates in C++ or regular expressions are used in
some solutions. Domain code takes benefit of higher level abstractions built with such constructs. Lower
level implementations provide performance for a specific platform. In the C++ library Kokkos [ETS14] C++
constructs are used to support different memory layouts for manycore architectures. The C++ stencil library
Stella [FOL+14] was developed for structured grids in climate models. It uses domain concepts through a DSL
to code kernels logic using C++ constructs. GridTools [Gri] generalize Stella and add support for other grid
types. In addition to C++, Gridtools support the translation of regular stencil code in Python into C++
Gridtools code. Berényi’s work [Ber15] extends C++ language with an embedded DSL for AST manipulation.
Constructs of this embedded DSL provide parallelization. YASK [You25] is a C++ framework that provides
constructs to specify stencils and kernels. It provides a specialized source-to-source translator to convert scalar
C++ stencil code into optimized C++ code. Optimization includes SIMD optimization in addition to many
other optimizations that harness the power of Xeon-Phi processor.

Some source-to-source translation solutions specify language constructs in a domain-specific language that
provides a new syntax which replaces general-purpose languages. Compilation of such DSLs code generates code
for different architectures. These DSLs need to support further language features like expressions, operators,
and may cover program flow and control. Acceptance of such solutions is crucial, e.g., declarative and functional
programming differs significantly from usually used coding styles and thus, is not easily accepted from the domain
scientists. Example DSLs that are tight to the scientific domain are Atmol [AvE01] and Liszt [DJP+11]. Such
solutions require modification to existing compilers or creation of a new language compiler and force users to
rewrite kernels completely with the new syntax. Additional work is needed to integrate the generated code with
other parts of the application code.

In contrast to standalone DSLs, Language extension depends on adding new types and constructs to a general-
purpose language to support domain concepts and needs modifying a compiler accordingly to generate code.
In Physis [MSNM11], code is written in C++ but extended with some domain concepts. It provides a source-
to-source translator built on top of ROSE [Qui00]. Code is translated by this source-to-source translator into

D1.2 DSL Concepts for Icosahedral Models 25/28

REFERENCES

the target platform code; CUDA code for GPU platforms and C for CPUs. It also uses a runtime compo-
nent for each platform to achieve high performance. It generates MPI code for distributed compute resources.
PyOP2 [RMM+12] provides a parallelization solution for numerical kernels over unstructured meshes through
an embedded DSL. On problem-specific parameter unavailability, PyOP2 uses just-in-time kernel compilation
and parallelization scheduling. Torres et al. [TLKL13] extend Fortran language to support different index
permutations in multidimensional arrays in ICON model. They also use ROSE to do source-to-source transla-
tion. However, the solution was heavy-weight and the Fortran parser required many adjustments to run on the
complex model code.

We build on the concept of a language extension DSL, with a more compact and dynamic configurable compi-
lation tool. The concept applies to various general-purpose languages in general.

9 Summary and Conclusions

We developed a set of language extensions based on the dialects that we discussed in the previous deliverable
(D1.1 Model-Specific Dialect Formulations). The set of the language extensions are named GGDML and
provide higher-level abstractions of scientific concepts related to grids. In this report we discuss GGDML and
its concepts.

To test GGDML, We used it to write a test application. The code is smaller than hand-written code. We
did not need to optimize the source code, we just used the GGDML extensions where applicable. To test the
performance and the optimization process, we prepared different configuration files to run the test application
on different run configurations. We generated code for both multi-core processor machines, and for nodes with
GPUs, both to run on single node and multi-node configurations. The translation tool could successfully apply
the expected optimizations to the source code using the semantics of the GGDML extensions. The performance
results of the experiments show that the codes that were generated show scalability over multiple nodes in
strong and weak scaling analysis.

With our work on Hybrid Fortran we have shown that it is possible for large structured grid Fortran applications
to

1. achieve a GPU implementation without rewriting major parts of the computational code,

2. abstract the memory layout and

3. allow for multiple parallelization granularities.

With our proposed method, a regional scale weather prediction model of significant importance to Japan’s
national weather service has been ported to GPU, showing a speedup of up to 4.9x on single GPU compared
to a single Xeon socket. When scaling up to 24 Tesla P100, less than half the number of GPUs is required
compared to contemporary Xeon CPU sockets to achieve the same result. Approximately 95% of the existing
codebase has been reused for this implementation and our implementation has grown by less than 4% in total,
even though it is now supporting GPU as well as CPU.

Acknowledgement

This work was supported by the German Research Foundation (DFG) through the Priority Programme 1648

”
Software for Exascale Computing“ (SPPEXA).

References

[AvE01] Robert A van Engelen. Atmol: A domain-specific language for atmospheric modeling. CIT. Journal
of computing and information technology, 9(4):289–303, 2001.

[Ber15] Dániel Berényi. C++ EDSL for parallel code generation. In Grid, Cloud & High Performance
Computing in Science (ROLCG), 2015 Conference, pages 1–5. IEEE, 2015.

D1.2 DSL Concepts for Icosahedral Models 26/28

REFERENCES

[BV12] Mauro Bianco and Ugo Varetto. A generic library for stencil computations. arXiv preprint
arXiv:1207.1746, 2012.

[CDRH15] Li-Wen Chang, Abdul Dakkak, Christopher I Rodrigues, and Wenmei Hwu. Tangram: a high-level
language for performance portable code synthesis. In Programmability Issues for Heterogeneous
Multicores, 2015.

[Cla] CSCS Claw. https://github.com/C2SM-RCM. Accessed: 2016-11-22.

[CSB11] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures. In Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 676–687. IEEE, 2011.

[DBB07] Romain Dolbeau, Stéphane Bihan, and François Bodin. Hmpp: A hybrid multi-core parallel pro-
gramming environment. In Workshop on general purpose processing on graphics processing units
(GPGPU 2007), volume 28, 2007.

[DJP+11] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina, Mike
Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, et al. Liszt: a domain
specific language for building portable mesh-based pde solvers. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, page 9. ACM,
2011.

[ETS14] H Carter Edwards, Christian R Trott, and Daniel Sunderland. Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Parallel and Distributed
Computing, 74(12):3202–3216, 2014.

[FGH+13] R Ford, MJ Glover, DA Ham, CM Maynard, SM Pickles, G Riley, and N Wood. Gung ho: A code
design for weather and climate prediction on exascale machines. In Proceedings of the Exascale
Applications and Software Conference, 2013.

[FOL+14] Oliver Fuhrer, Carlos Osuna, Xavier Lapillonne, Tobias Gysi, Ben Cumming, Mauro Bianco, Andrea
Arteaga, and Thomas Christoph Schulthess. Towards a performance portable, architecture agnostic
implementation strategy for weather and climate models. Supercomputing frontiers and innovations,
1(1):45–62, 2014.

[Gri] CSCS GridTools. http://www2.cosmo-model.org/content/consortium/developers/2016_01/

Gridtools_python.pdf. Accessed: 2016-11-22.

[MA18a] Michel Müller and Takayuki Aoki. Hybrid fortran: High productivity GPU porting framework
applied to japanese weather prediction model. In WACCPD: Accelerator Programming Using Di-
rectives 2017, pages 20–41. Springer International Publishing, 2018.

[MA18b] Michel Müller and Takayuki Aoki. New high performance GPGPU code transformation framework
applied to large production weather prediction code, 2018. Preprint as accepted for ACM TOPC.

[MGR+12] GR Mudalige, MB Giles, I Reguly, C Bertolli, and PH J Kelly. Op2: An active library framework
for solving unstructured mesh-based applications on multi-core and many-core architectures. In
Innovative Parallel Computing (InPar), 2012, pages 1–12. IEEE, 2012.

[MSNM11] Naoya Maruyama, Kento Sato, Tatsuo Nomura, and Satoshi Matsuoka. Physis: an implicitly parallel
programming model for stencil computations on large-scale gpu-accelerated supercomputers. In 2011
International Conference for High Performance Computing, Networking, Storage and Analysis (SC),
pages 1–12. IEEE, 2011.

[Qui00] Dan Quinlan. ROSE: Compiler support for object-oriented frameworks. Parallel Processing Letters,
10(02n03):215–226, 2000.

[RMG+14] István Z Reguly, Gihan R Mudalige, Michael B Giles, Dan Curran, and Simon McIntosh-Smith.
The ops domain specific abstraction for multi-block structured grid computations. In Domain-
Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC),
2014 Fourth International Workshop on, pages 58–67. IEEE, 2014.

D1.2 DSL Concepts for Icosahedral Models 27/28

https://github.com/C2SM-RCM
http://www2.cosmo-model.org/content/consortium/developers/2016_01/Gridtools_python.pdf
http://www2.cosmo-model.org/content/consortium/developers/2016_01/Gridtools_python.pdf

REFERENCES

[RMM+12] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant, David A Ham, Carlo
Bertolli, and Paul HJ Kelly. Pyop2: A high-level framework for performance-portable simulations on
unstructured meshes. In High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 1116–1123. IEEE, 2012.

[SAO14] Takashi Shimokawabe, Takayuki Aoki, and Naoyuki Onodera. High-productivity framework on
gpu-rich supercomputers for operational weather prediction code asuca. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis, pages
251–261. IEEE Press, 2014.

[SAO16] Takashi Shimokawabe, Takayuki Aoki, and Naoyuki Onodera. High-productivity framework for
large-scale gpu/cpu stencil applications. Procedia Computer Science, 80:1646–1657, 2016.

[TLKL13] Raul Torres, Leonidas Linardakis, TL Julian Kunkel, and Thomas Ludwig. Icon dsl: A domain-
specific language for climate modeling. In International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, Denver, Colo.[Available at h ttp://sc13. supercomputing.
org/sites/default/files/WorkshopsArchive/track139. html.], 2013.

[UCB11] Didem Unat, Xing Cai, and Scott B Baden. Mint: realizing cuda performance in 3d stencil methods
with annotated c. In Proceedings of the international conference on Supercomputing, pages 214–224.
ACM, 2011.

[You25] Chuck Yount. Recipe: Building and Running YASK (Yet Another Stencil
Kernel) on Intel R© Processors. https://software.intel.com/en-us/articles/

recipe-building-and-running-yask-yet-another-stencil-kernel-on-intel-processors,
2016 (Accessed: 2016-11-25).

D1.2 DSL Concepts for Icosahedral Models 28/28

https://software.intel.com/en-us/articles/recipe-building-and-running-yask-yet-another-stencil-kernel-on-intel-processors
https://software.intel.com/en-us/articles/recipe-building-and-running-yask-yet-another-stencil-kernel-on-intel-processors

	Introduction
	Relation to the Project
	Motivation
	Structure of this Document

	Euclidean- and Icosahedral Grid Geometries
	Methodology
	Model-Specific Dialects Reviewed
	GGDML: The DSL Concepts
	The modeling language
	Declarations
	Grid Specification
	Iterator
	Variable References
	Reduction Expressions

	Hybrid Fortran and ASUCA
	Parallel Loop Abstraction
	Compile-time Defined Memory Layout and Device Data Region
	Transformed Code
	Code Transformation Method

	Experiments
	GGDML
	Hybrid Fortran and ASUCA

	Related Work
	Summary and Conclusions

