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1 Introduction

Often the energy costs are a large amount of the total costs of ownership
(TCO) of a cluster. The longer the cluster is used the larger this slice of
the cake grows. Different approaches exist to alleviate this problem. CPUs
lower their clock speed when they are idle (which often already decreases
the power consumption by 50%), hard disks spin down and GPUs lower the
clock speed of both core and memory. All of these methods are applied very
fast and on demand. However the idle power consumption of today’s systems
remains high. If large idle times are likely to happen the best option could
be to completely shutdown a node. Most resource managers and schedulers
don’t support this. As soon as one node is turned off it is reported as offline
and no longer eligible to run jobs. Moab provides this functionality which is
the topic of this report.

We will investigate Moab’s behaviour during several different workloads
und measure how much energy can be conserved.

1.1 Moab

Moab Workload Manager is a powerful resource management and schedul-
ing system for clusters and grids. Moab is able to work with many other
resource management and monitoring tools such as IPMI (Intelligent Plat-
form Management Interface). Moab comes with features to reduce energy
consumption of a cluster by shutting down nodes that are not utilized.

1.2 eeClust

The evaluation of Moab was performed on the eeClust1 in Germany.

1.2.1 Hardware

The eeClust (energy efficient cluster) consists of 10 nodes. 5 of these nodes
are powered by an AMD CPU (Opteron 6168 @ 1.900MHz), the other 5
nodes by an Intel CPU (Xeon Nehalem X5560 @ 2.800MHz). 2 switches
are used for networking. An Allnet 4806W takes care of the service network
(IPMI) while a D-Link DGS-1210-48 is used for all the other networking
tasks. The power consumption of every node is measured through a LMG
450 Power Meter and stored in a database every 100ms.

1.2.2 Software

Both Torque and Maui are installed on the eeClust as resource manager
and job scheduler. During the moab evaluation phase maui and Moab were
running parallel.

1http://www.eeclust.de/
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2 Installation

We installed Moab adaptive hpc suite version 5.4.3. As a resource manager
we used Torque which was already installed and used together with Maui.

The installation process consists of two steps:

1. ./configure

2. ./make install

Configure accepts several options. For instance we had to specify which
resource manager moab should work with (–with-pbs).

We didn’t use the standard locations for binaries to avoid conflicts with
Maui, which should remain the primary scheduler on this cluster. The tools
and binary directories were installed to /sw/moab and the moab homedir has
been set to /opt/moab.

Before starting Moab we had to place the license file in the $MOABHOMEDIR.
To enable Moab on the nodes we had to create a moab.cfg file in each nodes
/etc folder that consists of only one line on which we had to specify the port
Moab uses at the server.
SCHEDCFG[Moab ] SERVER=e e c l u s t :42600

The default port was already used by Maui. We also had to copy the
binaries of the client commands that we were going to use on the nodes.

3 Setup

Most of the configuration takes place inside of the moab.cfg which lies inside
the $MOABHOMEDIR.

3.1 General

To enable collaboration with Torque we had to add the following lines to the
configuration file.
RMCFG[Moab ] TYPE=PBS
RMCFG[Moab ] SUBMITCMD=/usr /bin /qsub
RMCFG[Moab ] SBINDIR=/usr / sb in
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3.2 Green Computing

Green computing requires 2 scripts by which moab can monitor and control
the power state of each node. The scripts need to be configured on per-
resource manager basis. At first we tried to utilize the IPMI-interface that
is installed in the Moab tools directory. That way we were able to both
monitor and change the power state of each node. However after a second
look (green computing wasn’t working "right") we saw that further changes
were needed. As stated in the documentation the state (not to be confused
with the power state) needs to be reported as Unknown. This is necessary
because a node is still eligible to run jobs when it was powered down by the
green resource manager. The actual state of the node is in that case idle.
Furthermore the IPMI-interface initiates a cold shutdown which is not what
we intend.

3.2.1 Scripts

We decided to implement both scripts on our own in python. The cluster
query script directly reports the current power states and the node power
script initiates a soft shutdown.

Example output of cluster.query.ARCH.py
ehmke@eeclust :~/ s c r i p t s $ . / c l u s t e r . query . amd . py
amd1 POWER=OFF STATE=Unknown
amd2 POWER=OFF STATE=Unknown
amd3 POWER=OFF STATE=Unknown
amd4 POWER=OFF STATE=Unknown
amd5 POWER=OFF STATE=Unknown
ehmke@eeclust :~/ s c r i p t s $ . / c l u s t e r . query . i n t e l . py
i n t e l 1 POWER=OFF STATE=Unknown
i n t e l 2 POWER=OFF STATE=Unknown
i n t e l 3 POWER=ON STATE=Unknown
i n t e l 4 POWER=ON STATE=Unknown
i n t e l 5 POWER=ON STATE=Unknown

See appendix A.1 for a listing of these scripts.

3.2.2 Parameters

Green functionality isn’t enabled by default which means moab won’t use
the native resource manager to power down nodes as long as we don’t set
the POWERPOLICY to OnDemand in moab.cfg:
NODECFG[DEFAULT] POWERPOLICY=OnDemand
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To reduce the delay between a job submission and a job start when all or
most of the nodes are idle and therefore shutdown it is a possible to specify
that a subset of the available nodes won’t be shutdown although they are
idle. MAXGREENSTANDBYPOOLSIZE 5 means that at any time at least 5 nodes
are powered on. We set that parameter to 0 to maximize the energy saving.
MAXGREENSTANDBYPOOLSIZE 0

Since our cluster consists of 5 AMD and 5 Intel nodes we need to specify
different times for the boot and shutdown process. An Intel node for example
is shut down 2 times faster then an AMD node. For that reason we created
two partitions each having their own native resource manager. We then were
able to specify the NODEPOWERONDURATION and NODEPOWEROFFDURATION on a
per-resource manager basis.

Setting up partitions:
NODECFG[ i n t e l 1 ] PROVRM=i n t e l PARTITION=i n t e l
NODECFG[ i n t e l 2 ] PROVRM=i n t e l PARTITION=i n t e l
NODECFG[ i n t e l 3 ] PROVRM=i n t e l PARTITION=i n t e l
NODECFG[ i n t e l 4 ] PROVRM=i n t e l PARTITION=i n t e l
NODECFG[ i n t e l 5 ] PROVRM=i n t e l PARTITION=i n t e l

NODECFG[ amd1 ] PROVRM=amd PARTITION=amd
NODECFG[ amd2 ] PROVRM=amd PARTITION=amd
NODECFG[ amd3 ] PROVRM=amd PARTITION=amd
NODECFG[ amd4 ] PROVRM=amd PARTITION=amd
NODECFG[ amd5 ] PROVRM=amd PARTITION=amd

Configuring native resource managers:
RMCFG[ i n t e l ] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[ i n t e l ] CLUSTERQUERYURL=exec : /// s c r i p t s / c l u s t e r . query . i n t e l . py
RMCFG[ i n t e l ] NODEPOWERURL=exec : /// s c r i p t s /node . power . py
RMCFG[ i n t e l ] PROVDURATION=80

RMCFG[amd ] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[amd ] CLUSTERQUERYURL=exec : /// s c r i p t s / c l u s t e r . query . amd . py
RMCFG[amd ] NODEPOWERURL=exec : /// s c r i p t s /node . power . py
RMCFG[amd ] PROVDURATION=100

Specifying the measured poweron- and poweroffduration (see section 4.1):
PARCFG[amd ] NODEPOWERONDURATION=1:10
PARCFG[amd ] NODEPOWEROFFDURATION=0:30

PARCFG[ i n t e l ] NODEPOWERONDURATION=1:10
PARCFG[ i n t e l ] NODEPOWEROFFDURATION=0:10

Moab decides whether or not to shutdown a node depending on how
long it has been idle. That has the advantage that for example wrong wall-
clocktimes don’t negatively affect the energy savings. The downside of that
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is (if the wallclocktime would be correct) although the scheduler has the
knowledge that a node will be idle for a certain amount of time that knowl-
edge won’t be used to shutdown a node. The node has to be idle for the given
amount of time first. The corresponding parameter NODEIDLEPOWERTHRESHOLD
has to be specified in seconds.
NODEIDLEPOWERTHRESHOLD 150

By default Moab doesn’t log power-related events. To enable logging
these events we added the following line to moab.cfg.
RECORDEVENTLIST +NODEMODIFY

4 Measurements

4.1 Energy Saving Potential

Even though the nodes consume more power during the boot or shutdown
process (except when shutting down an Intel node – then it’s 120W average
power consumption during the shutdown process versus 133W idle power
consumption) it is not significant enough to justify a long idle time. During
the 70 second boot time an Intel node consumes an average of 150W –
only 17W more than during idle time. AMD nodes consume 175W average
during the 70 second boot process as opposed to the 105W during idle time.
When shutting down either node the average consumption is only 120W.

Table 1 presents the average of 5 complete boot and shutdown proce-
dures. The Tboot, Eboot, Tshutdown and Eshutdown columns show the duration
and energy consumption of the corresponding procedures. Pidle and Poff

show the average power consumption when a node is idle or off. Tmin stands
for the minimum time a node has to be idle until the energy consumption is
higher than it would have been if the node would be off (which includes one
boot and one shutdown procedure).

Tboot Eboot Tshutdown Eshutdown Pidle Poff Tmin

intel 70 s 10,5 kJ 10 s 1,2 kJ 133W 8W 88.48 s
amd 70 s 12,25 kJ 30 s 3,6 kJ 105W 8W 155.15 s

Table 1: Duration, power and energy values for the different node states

How to calculate Tmin (Break-even point):

Tmin =
Poff × Tboot − Eboot + Poff × Tshutdown − Eshutdown

Poff − Pidle
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Assumed an Intel node is idle for ca. 90 seconds (The exact time to reach
the break-even point would be 88.48 s) and will be shut down to save energy
the consumed energy consists of: 10 s shutting down the node, 10 s being off
and 70 s booting the node = 1,2 kJ + 0,08 kJ + 10,5 kJ = 11,78 kJ. Otherwise
the consumed energy would have been 90 s * 133W = 11970 J (11,97 kJ).
That means even though the node was only shutdown for 10 seconds it was
still enough time to save some energy.

Since the AMD nodes not only consume more energy during both the
shutdown and boot process but also consume 28W less during idle compared
to an Intel node they need to be idle for a longer time before it pays out to
shut them down.

If an AMD node is idle for ca. 160 seconds (exact time would be 155.15 s)
and not shutdown the consumed energy is 160 s * 105W = 16800 J (16,8 kJ).
If shutdown and therefore powered off for 60 seconds the energy consump-
tion would consist of 3,6 kJ (shutdown) + 0,48 kJ (off) + 12,25 kJ (boot) =
16,33 kJ.

4.2 Scenario

All jobs solve partial differential equations using a parallel application called
partdiff-par. The program is started with 1000 interlines and between
1000 and 4000 iterations depending on how many nodes are used. With
1000 interlines a Matrix with the dimension 8008 will be calculated which
uses 0.513 gigabytes memory. The jobs run between 5 and 20 minutes while
the wallclocktime is set to 30 minutes. In total 8 different jobs were used.
Both for Intel and AMD 4 jobs that require 1, 2, 3 and 4 nodes. Each of
these jobs got queued 4 times but not all at once. The time between the
first and the second submission of the 8 jobs was 60 seconds followed by 10
minutes, 200 seconds and 400 seconds.

Since the AMD nodes have more CPUs than the Intel nodes the jobs
should finish faster on them resulting in some idle time towards the end of
one run. That’s because partdiff-par scales well with more CPUs and in
this case the 12 AMD cores running at 1.9GHz perform better than the Intel
Xeon X5560 running at 2,8GHz.

To produce different workloads we changed the backfilling algorithms
used by the Moab scheduler. We used these 3 modes:
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FIRSTFIT The first job that fits into the current backfill window will be
started.

BESTFIT For each job that fits into the current backfill window a degree of fit
will be calculated. The Job with the best degree of fit will be started.

GREEDY A degree of fit for all possible combinations of jobs that fit into
the backfill window will be calculated. The best combination will be
started.

Each algorithm was tested once with and without green enabled. Our
main interest is the overall consumed energy for each run but also if the
activation of green computing negatively effects the scheduling regarding
runtime of the accumulated jobs. To evaluate this we used the Energy-
Delay-Product (EDP or E · T ) which is defined as follows:

EDP = Joule · seconds

It is not always desirable to shutdown nodes to save energy. If doing so,
it results in much longer execution time because of the produced overhead.
Most of the time fast scheduling and execution time is the most important
criterion. If the overhead due to the OnDemand POWERPOLICY becomes too
large it will result in a bad EDP score.
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4.3 Variations

Unfortunately there occured variations in the runtime of partdiff-par dur-
ing the execution of the configurations with BACKFILLPOLICY set to BESTFIT
and GREEDY. The jobs needed considerably longer to finish, especially when
the POWERPOLICY was set to STATIC. With POWERPOLICY set to OnDemand
the jobs needed about 10% longer (in total) and with POWERPOLICY set to
STATIC it was about 30%.

4.4 Comparisons

The run with static powerpolicy was as expected the fastest. 7061 seconds
(117 minutes) after the first job was submitted the last job finished. During
that time all nodes together consumed 14959,764 kJ.
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Figure 1: power consumption over time for AMD (POWERPOLICY STATIC)

With POWERPOLICY set to OnDemand the overall runtime (7587 seconds)
was increased by 7.5% compared to the STATIC run with. However during
that time the 8 nodes together only consumed 13736.383 kJ which is a de-
crease of 8.2%. Although that sounds not too much it has to keep in mind
that the workload does not include large idle times which are, depending on
the application field, likely to happen in real environments. In this case the
last AMD job which used all 4 nodes finished 44 minutes before the last Intel
job finished. That means the AMD nodes were idle 35% of the time.
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Figure 2: power consumption over time for AMD (POWERPOLICY OnDemand)

Looking at the graph representing the power consumption over time (see
figure 4) one can see that shutting down nodes produces a certain overhead.
In this scenario it is easily visible (see e.g. minute 30) because the jobs run
between 5min and 20min whereas a complete reboot already takes 2min.

This is even better visible looking at figure 5 where the total power con-
sumption over time accumulated of all nodes is compared between a test run
using POWERPOLICY OnDemand and one using POWERPOLICY STATIC. At the
first marked point in the chart one can see that the test run using OnDemand
POWERPOLICY needs noticeable longer to get to a point where the STATIC run
has been before (all 8 nodes active). At the second marked point it is visible
at a first glance that the different POWERPOLICY has affected the scheduling.
While during the STATIC run the cluster is for almost 30 minutes at full ca-
pacity during minute 15 and 45 the OnDemand run shows a different picture.
From that point on the graphs continue to be very different not only because
the OnDemand run consumes less energy but also because the scheduling has
changed. Most of the time the OnDemand graph remains below the STATIC
graph which is why the overall consumed energy is lower although the overall
runtime was longer.
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Figure 3: power consumption over time for Intel (POWERPOLICY STATIC)
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Figure 4: power consumption over time for Intel (POWERPOLICY OnDemand)
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Figure 6: Total time elapsed in seconds during the 6 different test runs

The EDP of the OnDemand run is slightly better than the STATIC run
(104217 vs. 105630, see figure 8) which is a result of the difference between
the consumed energy being higher than the difference between the runtimes.
The other test runs resulted in similar results as figure 6, 7 and 8 show.
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 0

 50000

 100000

 150000

 200000

 250000

Firstfit Bestfit Greedy

Jo
u
le

-s
e
co

n
d

s

Configuration

Static
OnDemand

Figure 8: Energy-Delay-Product of the 6 different configurations (smaller is better)

15



4.5 Blizzard

All our measurements so far took place on the eeClust which uses “nor-
mal” hardware. The effect of that is that for example Tmin is extremely
low. The hardware ist almost predestinated to make use of Moab’s green
features. Large-Scale clusters often have special hardware and operating
systems. These systems usually take much longer to boot or shutdown. Fur-
thermore the workload on these clusters is different to out artificially created
workload. In this section we will take a closer look at these differences and
try to estimate the potential savings.

The supercomputer Blizzard of the DKRZ consists of 264 IBM Power6
nodes. Its peak performance is 158 TeraFlop/s. Each of the 264 nodes has 16
Dual-core CPUs (8448 cores total). The cluster has more than 20 TeraByte
main memory and uses an Infiniband network.

4.5.1 Energy Saving Potential (Blizzard)

Table 2 shows some facts about a typical IBM Power6 node installed in the
Blizzard supercomputer. The variations in both boot and shutdown time
depend on how many nodes at the same time are booted or shutdown. The
power consumption when a node is powered off is just assumed – we had no
real values for that node state.

state duration power consumption
boot 15,5 - 30min 2550W - 4250W
shutdown 5 - 6min 2550W - 4250W
idle - 2550W - 3083W
off - ca. 100W

Table 2: Duration and power consumption of the node states

Since the values in Table 2 are not as accurate as for the eeClust and
the boot and shutdown times vary we calculated the worst and best case
scenario for Tmin.

Tmin (Break-even point) for the Blizzard (see section 4.1):

worst case: 3659 s (ca. 61min)
best case: 2083 s (ca. 35min)
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4.5.2 Load investigation
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Figure 9: Load over one month (March 2011) on the DKRZ Blizzard cluster

To investige how much potential for savings is available we monitored
the load of the DKRZ Blizzard supercomputer over 1 month. See appendix
A.3 for the script that generated the charts (figure 9, 10 and 11). This chart
differentiates only idle and busy nodes. That means if node A is idle for 30
minutes and node B is idle for 60 minutes right after node A has continued to
be busy it appears in the chart like one idle node for 90 minutes. In Figure
9 one can see that there is definately potential. For example around the
middle of that month the load drops towards 180 busy nodes several times.
Since these windows are relatively long (several hours - one day) it would
most likely pay out to shutdown some of the nodes.

To get an idea how long the timespans are when some nodes could be
shutdown we took a closer look at some thresholds. The idea behind this
is that one node can be idle for a very long time in total but if that time
consists of many very short times it may not be worthwhile to shutdown that
node. Figure 10 shows that when there are between 1 and 10 nodes idle the
length of that idle time is about 6 hours. That average idle time is much
shorter for 10 to 15 idle nodes. Thus if there are 15 nodes idle on an average
10 of them will stay idle for 6 hours whereas the other 5 will compute again
in 2 hours. These interrupts of the often very long total idle time (see figure
11) make it harder to save energy in terms of shutting down one node. In
that case good scheduling is needed to maximize the length of the average
idle times without increasing the total idle time.
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Figure 10: Average length of the timespans the nodes between the thresholds spent idle

If we assume that the perfect scheduler is used we can use the data of
figure 9 together with the Tmin (see section 4.5.1) to calculate the possible
savings. During the timespan shown by figure 9 5668949 CPU hours were
available and 636310 of these were spent idle which is 5.986%. Not all of these
idle CPU hours could have been avoided by shutting down certain nodes. We
had to subtract the boot and shutdown times and skip timespans that were
shorter than Tmin. That left us with 536297 CPU hours which could have
been spent shutdown (5.045%) which equals 22793 kilowatt hours (kWh). If
the energy costs are about 0,13 ¤ per kilowatt hour 2963 ¤ could have been
saved during this particular timespan.

5 Summary

Shutting down one node to save the energy is a very drastic action. On the
eeClust it wasn’t much of a big deal since it is a very small cluster with
ordinary operating systems. Other systems may have much longer boot and
shutdown times which makes it harder to profit from shutting down nodes. If
the node is not shutdown long enough to get to a break-even point wherefrom
the energy consumption is lower than if turned on it has 2 negative effects:
No energy was saved although the node was shutdown and the scheduling
was affected negatively. Moab allows the user to specify how long a node
may be idle before it will be shutdown. The big problem that there is no
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Figure 11: Total amount of time the nodes between the certain thresholds spent idle

way to ensure that in the near future there will be no eligible jobs that
cause a node to boot up again remains. Especially in environments with
a near 100% workload it is difficult to use the remaining time frames for
savings due to shutting down nodes. Shutting down idle nodes is therefore
no general purpose-solution to save energy. It must be evaluated if it’s a
feasible option or if it would slow down the scheduling in a way that the
overall energy consumption becomes worse. Finally one can say that this
works best at specific workloads. For example if there are continually very
large jobs which require many smaller jobs to finish before enough resources
are available to start these jobs. Another example would be a workload that
exhibits seasonal variations. It shouldn’t be a problem to adapt to these
variations.

I would like to thank Carsten Beyer and Ernst-Gunar Ortlepp for their
datailed replies to my questions and also the Moab team for their support
and the evaluation license.
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A Scripts

A.1 Clusterquery

The only difference between cluster.query.amd.py and
cluster.query.intel.py is the array of hostnames in line 18.
#! /usr / bin /python
# used by moab
# s c r i p t to repor t c l u s t e r query data

import subproces s
import sys

def bash (cmd , cwd=None ) :
re tVal = subproces s . Popen (cmd , s h e l l=True , \

stdout=subproces s . PIPE , cwd=cwd ) . \
stdout . read ( ) . s t r i p ( ’ \n ’ ) . s p l i t ( ’ \n ’ )

i f re tVal==[ ’ ’ ] :
return 0

else :
return re tVal

def main ( ) :
nodes = [ ’ i n t e l 1 ’ , ’ i n t e l 2 ’ , ’ i n t e l 3 ’ , ’ i n t e l 4 ’ , ’ i n t e l 5 ’ ]
for n in nodes :

i c = ’ ipmi too l −H %s−ipmi −U X −P X −L USER ’ % (n , ) +\
’ power s t a tu s | cut −d " " −f 4 ’

print n + ’ POWER=’ + s t r ( bash ( i c ) [ 0 ] ) . upper ( ) + \
’ STATE=Unknown ’

return 0

i f __name__ == "__main__" :
sys . e x i t (main ( ) )

A.2 Node power

#! /usr / bin /python
# used by moab
# s c r i p t to power on or o f f nodes

import subproces s
import sys

def bash (cmd , cwd=None ) :
re tVal = subproces s . Popen (cmd , s h e l l=True , \

stdout=subproces s . PIPE , cwd=cwd ) . \
stdout . read ( ) . s t r i p ( ’ \n ’ ) . s p l i t ( ’ \n ’ )

i f re tVal==[ ’ ’ ] :
return 0

else :
return re tVal

def main ( argv=None ) :
i f argv i s None :
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argv = sys . argv

i f l en ( argv ) != 3 :
print ’ usage : ’ + s t r ( argv [ 0 ] ) +

’ <node>[,<node>] <ON | OFF>’
return 1

nodes = argv [ 1 ] . s p l i t ( ’ , ’ )
mode = s t r ( argv [ l en ( argv ) − 1 ] ) . lower ( )

for node in nodes :
ipmicmd = " ipmi too l −U X −P X −H" + \

" %s−ipmi power %s " % (node , mode)
i f ipmicmd == 0 :

return 1
bash ( ipmicmd )

return 0

i f __name__ == "__main__" :
sys . e x i t (main ( ) )

A.3 Blizzard accounting

#!/ usr / bin /python
import sys
import time
import math
import os

ncpu = 32 # CPU cores per node
mintime = 3659 # The ca l c u l a t e d T_min

def open_accounting ( f i l ename , path ) :
try :

f = open ( path + f i l ename )
except IOError :

print IOError
return 1

return f

def c lose_account ing ( f ) :
f . c l o s e ( )
return 0

def get_ts ( date ) :
return i n t ( time . mktime ( time . s t rpt ime ( date , "%y%m%d %H%M%S" ) ) )

def get_start_end ( l ) :
s t a r t = 0
end = 0
s e l i s t = [ ]
for e in l :

i f s t a r t == 0 or e [ 0 ] < s t a r t :
s t a r t = e [ 0 ]

i f end == 0 or e [ 1 ] > end :
end = e [ 1 ]

s e l i s t . append ( s t a r t )
s e l i s t . append ( end )
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return s e l i s t

def load_accounting ( f , j o b l i s t ) :
global ncpu
for l in f :

p = l . s p l i t ( )
hc = 0
s t a r t = 0
end = 0
for i , e in enumerate (p ) :

i f e == ’EB ’ :
s t a r t = get_ts ( s t r (p [ i + 1 ] + ’ ’ + p [ i + 2 ] ) )

i f e == ’EE ’ :
end = get_ts ( s t r (p [ i + 1 ] + ’ ’ + p [ i + 2 ] ) )

i f e == ’HC’ :
i f i n t (p [ i + 1 ] ) > 0 : # normal , hos t s

hc = in t (p [ i + 1 ] )
e l i f i n t (p [ i + 1 ] ) == 0 : # s e r i a l job

hc = f l o a t (1 / ncpu )
e l i f i n t (p [ i + 1 ] ) < 0 : # sp e c i a l cases

i f i n t (p [ i + 1 ] ) == −99:
hc = 0

e l i f i n t (p [ i + 1 ] ) == −100:
hc = 0

else :
hc = f l o a t (1 / \
math . f abs ( f l o a t (p [ i + 1 ] ) ) )

j o b l i s t . append ( [ s t a r t , end , hc ] )

return j o b l i s t

# sor t l i s t by timestamp ( j o b l i s t [ 0 ] [ 0 ] )
def s o r t_ l i s t ( j o b l i s t ) :

return so r t ed ( j o b l i s t , key = lambda element : element [ 0 ] )

def get_act ive_hosts ( j , l ) :
hos t s = 0 .0
for e in l :

i f j > e [ 0 ] and j < e [ 1 ] :
hos t s += e [ 2 ]

return hos t s

def process_account ing ( l , s t ep ) :
n_host_sum = 0
n_host_sum_inner = 0
n_entr ies = 0
n_entr ies_inner = 0

inner_star t = 0
inner_end = 0

s e l i s t = get_start_end ( l )
s t a r t = s e l i s t [ 0 ]
end = s e l i s t [ 1 ]

try :
f = open ( ’ t ime l i n e ’ , ’w ’ )

except IOError :
print IOError
return 1
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boundar ies = [ ]
for i in range ( 2 4 8 ) :

boundar ies . append ( [ i + 1 , 0 , [ ] , 0 ] )

for i in range ( s ta r t , end + 1 , i n t ( s tep ) ) :
hc = get_act ive_hosts ( i , l )
print s t r ( i ) + ’ ’ + s t r ( hc )

n_host_sum += hc
n_entr ies += 1

# Calcu la t e timespans , t o t a l i d l CPUh e tc

i nner_star t = 1298889239
inner_end = 1301461239
# Exclude some time at the beg inning and the end o f the month
i f i > inner_star t and i < inner_end :

n_entr ies_inner += 1
n_host_sum_inner += hc

# For each boundary
for b in boundar ies :

# i f the current hos tcount i s lower than t h i s boundary
i f f l o a t ( hc ) < f l o a t (b [ 0 ] ) :

# i f i t i s the f i r s t time the hos tcount
# deceedes the boundary , s t o r e the time
i f b [ 1 ] == 0 :

b [ 1 ] = in t ( i )

# i f the current hos tcount i s h i gher then t h i s boundary
i f f l o a t ( hc ) > f l o a t (b [ 0 ] ) :

# i f the boundary has been deceeded be f o r e
# save the e l apsed time
i f b [ 1 ] > 0 :

b [ 2 ] . append ( i n t ( i ) − i n t (b [ 1 ] ) )
b [ 3 ] += 1

b [ 1 ] = 0

# sp e c i a l case , boundary was deceeded but never exceeded
for b in boundar ies :

i f b [ 1 ] > 0 :
i f b [ 3 ] == 0 :

b [ 2 ] . append ( end − b [ 1 ] )
b [ 3 ] = 1

print ’AVG ACTIVE HOSTS: ’ + s t r ( f l o a t (n_host_sum) / \
( f l o a t ( n_entr ies ) ) )

print ’AVG ACTIVE INNER HOSTS: ’ + s t r ( f l o a t ( n_host_sum_inner ) / \
( f l o a t ( n_entr ies_inner ) ) )

print ’AVG IDLE TIME SPANS: ’

# Generate gnup lo t data
for i , b in enumerate ( boundar ies ) :

print s t r ( boundar ies [ i ] [ 0 ] ) + ’ ’ ,

i f b [ 2 ] > 0 and b [ 3 ] > 0 :
print s t r ( f l o a t (sum(b [ 2 ] ) ) / f l o a t (b [ 3 ] ) ) ,
print s t r (sum(b [ 2 ] ) ) + ’ count : ’ + s t r (b [ 3 ] )

else :
print ’ 0 ’ ,
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print s t r (sum(b [ 2 ] ) ) + ’ count : ’ + s t r (b [ 3 ] )

i d l e t ime = 0
r e a l i d l e t im e = 0
for b in boundar ies :

# for each i d l e timespan of t h i s node
for t in b [ 2 ] :

i f t > mintime :
r e a l i d l e t im e += t
id l e t ime += t − mintime

print ’IDLETIME: ’ + s t r ( r e a l i d l e t im e )
print ’SHUTDOWNTIME: ’ + s t r ( i d l e t ime ) + ’ during : ’ + \

s t r ( inner_star t ) + ’ − ’ + s t r ( inner_end )
return 0

def main ( args ) :
i f l en ( args ) != 3 :

print "Provide f o l d e r with account ing f i l e s as argument ! "
print " Reso lut ion in seconds . "
print args [ 0 ] + " <account ing f o l d e r > <re s o l u t i on >"
return 1

path = args [ 1 ]
s tep = args [ 2 ]

i f path [ l en ( path ) − 1 ] != ’ / ’ :
path += ’ / ’

j o b l i s t = [ ]
l i s t i n g = os . l i s t d i r ( path )
for i n f i l e in l i s t i n g :

print "Loaded : " + i n f i l e
f = open_accounting ( i n f i l e , path )
load_accounting ( f , j o b l i s t )
c lose_account ing ( f )

s j o b l i s t = s o r t_ l i s t ( j o b l i s t )
return process_account ing ( s j o b l i s t , s t ep )

i f __name__ == ’__main__ ’ :
sys . e x i t (main ( sys . argv ) )
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