
Moab Evaluation
Projekt Parallelrechnerevaluation

Florian Ehmke
8ehmke@informatik.uni-hamburg.de

University of Hamburg

1. Juli 2011

1 / 29

Index
Introduction / Motivation

Energy aware High-performance computing

Scheduling / Resource management
General
Moab

Moab Setup

eeClust
Energy Saving Potential
Scenario
Measurements

Energy-delay-product

Blizzard
Hardware
Energy Saving Potential
Load investigation

Conclusion

2 / 29

Introduction / Motivation
Energy aware High-performance computing

I Often the energy costs are a large amount of the total
costs of ownership (TCO) of a cluster

I Even with current Energy-saving mechanisms the power
consumption during idle phases remains high

I Shutting down idle nodes seems like a viable option

3 / 29

Introduction / Motivation
Energy aware High-performance computing

I 5 AMD nodes (each 2 Opteron 6168 CPUs)
I 5x 2x 12 cores @1,9 GHz

I 5 Intel nodes (each 2 Xeon Nehalem X5560 CPUs)
I 5x 2x 4 cores (8 Threads) @2,8 GHz

Purpose of this project

I Evaluate Moab’s green features on the eeClust

I Analyse workload on the Blizzard cluster

4 / 29

Introduction / Motivation
Energy aware High-performance computing

Scheduling / Resource management
General
Moab

Moab Setup

eeClust
Energy Saving Potential
Scenario
Measurements

Energy-delay-product

Blizzard
Hardware
Energy Saving Potential
Load investigation

Conclusion

5 / 29

Scheduling / Resource management
General

Resource manager

A resource manager monitors the state of nodes (power, load,
jobs etc.), receives new jobs and executes them on compute
nodes.

Scheduler
The scheduler tells the resource manager what to do (when
and where to run jobs).

Current installation on eeClust

I Resource manager: Torque

I Scheduler: Maui

6 / 29

Scheduling / Resource management
Moab

What normally happens when a node is shutdown:

1. Resource manager detects that node is off

2. Resource manager tells scheduler that node is off

3. Scheduler (e.g. Maui) marks node as down and
completely ignores that node for future scheduling

7 / 29

Scheduling / Resource management
Moab

What is Moab?

I Powerful resource management and scheduling system

I Works with other resource management and monitors
(Torque, PBS, IPMI, Ganglia etc.)

I Closed source, basic functions similar to Maui

I Moab, Maui, Torque developed by Adaptive Computing1

I Supports shutting down idle nodes (without disturbing
the scheduling)

1http://www.adaptivecomputing.com/
8 / 29

Scheduling / Resource management
Moab

What happens when a node is shutdown by Moab:

1. Moab initiates shutdown (e.g. via IPMI)

2. Resource manager detects that node is off

3. Moab continues to regard the node as available and uses
its resources for scheduling

4. If any job needs the resources of that node Moab boots
that node again and waits for the resource manager

5. As soon as the resource manager detects the node as
available Moab submits the job

9 / 29

Introduction / Motivation
Energy aware High-performance computing

Scheduling / Resource management
General
Moab

Moab Setup

eeClust
Energy Saving Potential
Scenario
Measurements

Energy-delay-product

Blizzard
Hardware
Energy Saving Potential
Load investigation

Conclusion

10 / 29

Moab Setup

Installation

1. ./configure

2. ./make install

Configuration - Server

RMCFG[Moab] TYPE=PBS
RMCFG[Moab] SUBMITCMD=/usr / bin /qsub
RMCFG[Moab] SBINDIR=/usr / sbin

Configuration - Nodes

SCHEDCFG[Moab] SERVER=eeclust:42600

11 / 29

Moab Setup

Configuration - Green features

NODECFG[DEFAULT] POWERPOLICY=OnDemand
MAXGREENSTANDBYPOOLSIZE 0
NODEIDLEPOWERTHRESHOLD 150

RMCFG[inte l] TYPE=NATIVE
RMCFG[inte l] CLUSTERQUERYURL=exec : / / / query .py
RMCFG[inte l] NODEPOWERURL=exec : / / / power.py

PARCFG[inte l] NODEPOWERONDURATION=1:10
PARCFG[inte l] NODEPOWEROFFDURATION=0:10

12 / 29

Introduction / Motivation
Energy aware High-performance computing

Scheduling / Resource management
General
Moab

Moab Setup

eeClust
Energy Saving Potential
Scenario
Measurements

Energy-delay-product

Blizzard
Hardware
Energy Saving Potential
Load investigation

Conclusion

13 / 29

eeClust
Energy Saving Potential

Tboot Eboot Tshutdown Eshutdown Pidle Poff Tmin

intel 70 s 10,5 kJ 10 s 1,2 kJ 133 W 8 W 89.12 s

amd 70 s 12,25 kJ 30 s 3,6 kJ 105 W 8 W 155.15 s

Table: Duration of boot and shutdown, Energy consumption during boot
and shutdown, Power consumption during idle and off and min. idle time

How to calculate Tmin (Break-even point)

Tmin =
Poff × Tboot + Poff × Tshutdown − Eboot − Eshutdown

Poff − Pidle

14 / 29

eeClust
Scenario

I All jobs execute partdiff-par

I Jobs run between 5 and 20 minutes

I Different backfilling algorithms were applied:

FIRSTFIT The first job that fits into the current backfill window will
be started.

BESTFIT For each job that fits into the current backfill window a
degree of fit will be calculated. The Job with the best
degree of fit will be started.

GREEDY A degree of fit for all possible combinations of jobs that fit
into the backfill window will be calculated. The best
combination will be started.

15 / 29

eeClust
Measurements

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15

W
a
tt

Time

Overhead due to OnDemand STATIC FIRSTFIT

OnDemand FIRSTFIT

Figure: Process of the power consumption (STATIC vs. OnDemand)

16 / 29

eeClust
Measurements

 0

 2000

 4000

 6000

 8000

 10000

 12000

Firstfit Bestfit Greedy

R
u
n
ti

m
e
 (

s)

Configuration

Static
OnDemand

Figure: Total time elapsed in seconds during the 6 different test runs

17 / 29

eeClust
Measurements

 0

 5000

 10000

 15000

 20000

 25000

Firstfit Bestfit Greedy

E
n
e
rg

y
 (

m
J)

Configuration

Static
OnDemand

Figure: Total energy consumption in mJ of each different configuration

18 / 29

eeClust
Measurements - Energy-delay-product

I Saving energy does not justify very long runtimes

I Energy-delay-product gives an idea how good/bad the
relation between the consumed energy and the runtime is

I EDP is defined as follows:

EDP = Joule · seconds

19 / 29

eeClust
Measurements

 0

 50000

 100000

 150000

 200000

 250000

Firstfit Bestfit Greedy

Jo
u
le

-s
e
co

n
d

s

Configuration

Static
OnDemand

Figure: Energy-Delay-Product of the 6 configurations (smaller is better)

20 / 29

eeClust
Measurements

I OnDemand POWERPOLICY results in noticeable overhead

I It saves enough energy to achieve better EDP score

I Scheduling changes due to the overhead

21 / 29

Introduction / Motivation
Energy aware High-performance computing

Scheduling / Resource management
General
Moab

Moab Setup

eeClust
Energy Saving Potential
Scenario
Measurements

Energy-delay-product

Blizzard
Hardware
Energy Saving Potential
Load investigation

Conclusion

22 / 29

Blizzard
Hardware

I computational power: 158 TeraFlops/s

I 264 IBM Power6 nodes

I 16 Dual-core CPUs per node (8448 cores total)

I more than 20 TeraByte main memory

I Infiniband network

23 / 29

Blizzard
Energy Saving Potential

state duration Power Consumption

boot 15,5 - 30 min 2550 W - 4250 W

shutdown 5 - 6 min 2550 W - 4250 W

idle - 2550 W - 3083 W

off - ca. 100 W

Table: Power Consumption during boot and shutdown

min. time (Break-even point)

worst case: 3659 s (ca. 61 min)
best case: 2083 s (ca. 35 min)

24 / 29

Blizzard
Load investigation

 0

 50

 100

 150

 200

 250

 300

05.03 12.03 19.03 26.03

B
u
sy

 N
o
d
e
s

Time

Busy Nodes

Figure: Load over one month (May 2011) on the DKRZ Blizzard cluster

25 / 29

Blizzard
Load investigation

I Overall available CPU hours: 5668949

I CPU hours spent idle: 339365 (5.986%)

I 286025 could have been spent shutdown (5.045%)

I Possibly saved kilowatt hours (kWh): 22793

I Possibly saved money (0,13¤ per kWh): 2963 ¤

26 / 29

Introduction / Motivation
Energy aware High-performance computing

Scheduling / Resource management
General
Moab

Moab Setup

eeClust
Energy Saving Potential
Scenario
Measurements

Energy-delay-product

Blizzard
Hardware
Energy Saving Potential
Load investigation

Conclusion

27 / 29

Conclusion

I Shutting down one node to save energy is a drastic action

I Savings depend on the workload for the most part

I OnDemand increases runtime and changes scheduling

I Saved energy evens out runtime overhead (EDP)

28 / 29

Thank you for your attention.

29 / 29

	Introduction / Motivation
	Energy aware High-performance computing

	Scheduling / Resource management
	
	General
	Moab

	Moab Setup
	

	eeClust
	
	Energy Saving Potential
	Scenario
	Measurements

	Blizzard
	
	Hardware
	Energy Saving Potential
	Load investigation

	Conclusion
	
	

