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Introduction

FUSE

@ Goal was to implement a global network file system
o Needed to implement the underlying network file system first
@ Should be implemented as a FUSE file system

e Runs in user space
o Relatively easy to implement
o Relatively easy to maintain
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Introduction

Overview

o rfsd — Remote File System Daemon
o Low-level network file system
@ librfs — Remote File System Library
e Abstracts protocol implementation
@ rfsc — Remote File System Client
o Basically a simple throughput and metadata benchmark
e grfs — Global Remote File System

e High-level global network file system
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rfsd

Motivation

A separate protocol was designed

Existing protocols did not meet the requirements
SSH

e Does not support separate control and data channels
e Data encryption makes transfers too slow

o Not possible to deactivate the encryption
o FTP

e Only possible to write a complete file or append data to it
o File listings are hard to parse, because their format is not
well-defined
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Overview

rfsd

Implement our own protocol

Separate control and data channels

e No encryption
e Control channel can be encrypted via SSH forwarding

Should be as fast as possible

e Microscope pumps out 1 GB/s
e 62 servers
e = 100-200 MB/s

Should be as transparent as possible

e Use underlying local file system
e Do not stripe files across servers

@ Should be as safe as possible

e Support replication



rfsd

Implementation

@ Basically provide remote access to the local file system
e Protocol very similar to POSIX
e pread(), pwrite(), ...

o Plus some fancy features, of course :-)

o Fully multi-threaded

e Each connection handled in its own thread
e Long-running operations do not block other connections

@ Background replication

Master-slave concept

One master, multiple slaves

All operations are replicated in a background thread
Write operations are barriers

@ We do not need to allocate additional memory for background
replication

@ We do not need to read from the file to preserve memory
(race conditions)
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Motivation

e Hide all the “ugly” implementation details :-)
@ Good error reporting via GError

e Part of GLib
@ Some operations require multiple steps

o For example: rfs_read(), rfs_read_do(), rfs_read_end()
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Overview

@ Merge multiple file systems into one global namespace
e Example:

servl has directory /foo, serv2 has directory /bar
$ grfs serv1:6666 serv2:6666 /grfs

$ 1s /grfs

> foo bar
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Evaluation

@ The next benchmark is local

e That is, client and server were started on the same machine
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File Systems
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Read: Quite slow — Write: RFS (XFS) > XFS — dd vs. rfsc?
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Evaluation

@ The next two benchmarks are remote

o Client and server were started on two separate machines
@ We have a GBit network

o About 119 MB/s maximum throughput
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Write: Almost network maximum — Read: Slight overhead
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Remote File System Metadata Performance
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stat and access: Same on /dev/shm and XFS (no writes)
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Introduction

Evaluation

@ The next two benchmarks are remote
o Clients and servers were started on separate machines
o All clients were started on the same machine

@ We have a GBit network
e About 119 MB/s maximum throughput

Conclusion and Future Work
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Global Remote File System Performance

1 Server/Client 1 Server/Client (Direct 1/0) 9 Servers/Clients 9 Servers/Clients (Direct 1/0)
Configurations

B Write B Read

Read: 2GB/s from kernel cache (screws up diagram)
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These numbers are quite bad . ..

New performance haek improvement in grfs

o No new diagrams, it was too late :-)

1 server/client

o Normal: 56 MB/s (Write) — 2 GB/s (Read)
o Direct I/O: 112MB/s — 19 MB/s (Read)

Remaining problems

o Normal: Fix write
e Direct I/O: Fix read
e Increasing FUSE's buffer size would suffice

@ Too much overhead for 4 or 16 KB buffers
e 128 KB work well

e Does not work — FUSE bug?
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Global Remote File System Metadata Performance

1 Server/Client

1 Server/Client (Direct 1/0) 9 Servers/Clients

Configurations

M create M unlink

9 Servers/Clients (Direct 1/0)
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Conclusion and Future Work

[ ]
Future Work

@ Server-side replication v/

e The client — that is, the Global Remote File System — used to
do this

@ Support for High Availability v/
e Global Remote File System should continue working if servers
go offline
e Simply use remaining servers, providing a partial view of the
global file system
o Reconnect on SIGHUP
@ Synchronize multiple Remote File System Daemons
e Unique IDs for all modifying operations
@ Make grfs usable for all users
o Check FUSE's allow_other and default_permissions
e Optimize the Global Remote File System/FUSE
e Container support (?)
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