Introduction rfsd librfs grfs Evaluation
[o]e] 000 (o] (o] 000000000

Remote File System Suite

Softwarepraktikum flir Fortgeschrittene

Michael Kuhn

Parallele und Verteilte Systeme
Institut fiir Informatik
Ruprecht-Karls-Universitat Heidelberg

2009-02-05

Conclusion and Future Work

[e]

/24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work
[o]e] 000 (o] (o] 000000000 o]

© Introduction
@ Introduction

2/24

Introduction

librfs gris
0 o C

Conclusion and Future Work

Introduction

FUSE

@ Goal was to implement a global network file system
o Needed to implement the underlying network file system first
@ Should be implemented as a FUSE file system

e Runs in user space
o Relatively easy to implement
o Relatively easy to maintain

Introduction
oe

Introduction

Overview

o rfsd — Remote File System Daemon
o Low-level network file system
@ librfs — Remote File System Library
e Abstracts protocol implementation
@ rfsc — Remote File System Client
o Basically a simple throughput and metadata benchmark
e grfs — Global Remote File System

e High-level global network file system

24

Introduction rfsd librfs grfs
[o]e] 000 (o] (o]

© Remote File System Daemon
@ Motivation
@ Overview
@ Implementation

Evaluation
000000000

Conclusion and Future Work
o]

rfsd

Motivation

A separate protocol was designed

Existing protocols did not meet the requirements
SSH

e Does not support separate control and data channels
e Data encryption makes transfers too slow

o Not possible to deactivate the encryption
o FTP

e Only possible to write a complete file or append data to it
o File listings are hard to parse, because their format is not
well-defined

6

24

Overview

rfsd

Implement our own protocol

Separate control and data channels

e No encryption
e Control channel can be encrypted via SSH forwarding

Should be as fast as possible

e Microscope pumps out 1 GB/s
e 62 servers
e = 100-200 MB/s

Should be as transparent as possible

e Use underlying local file system
e Do not stripe files across servers

@ Should be as safe as possible

e Support replication

rfsd

Implementation

@ Basically provide remote access to the local file system
e Protocol very similar to POSIX
e pread(), pwrite(), ...

o Plus some fancy features, of course :-)

o Fully multi-threaded

e Each connection handled in its own thread
e Long-running operations do not block other connections

@ Background replication

Master-slave concept

One master, multiple slaves

All operations are replicated in a background thread
Write operations are barriers

@ We do not need to allocate additional memory for background
replication

@ We do not need to read from the file to preserve memory
(race conditions)

24

Introduction rfsd librfs gris Evaluation Conclusion and Future Work
(e]e] [e]e]e} o o 000000000 [e]

© Remote File System Library
@ Motivation

9/24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Motivation

e Hide all the “ugly” implementation details :-)
@ Good error reporting via GError

e Part of GLib
@ Some operations require multiple steps

o For example: rfs_read(), rfs_read_do(), rfs_read_end()

10/ 24

Introduction rfsd librfs gris Evaluation Conclusion and Future Work
(e]e] [e]e]e} o o 000000000 [e]

@ Global Remote File System
@ Overview

11/24

Introduction rfsd librfs gris Evaluation Conclusion and Future Work

Overview

@ Merge multiple file systems into one global namespace
e Example:

servl has directory /foo, serv2 has directory /bar
$ grfs serv1:6666 serv2:6666 /grfs

$ 1s /grfs

> foo bar

12 /24

Introduction rfsd librfs gris Evaluation Conclusion and Future Work
(e]e] [e]e]e} o o 000000000 [e]

© Evaluation
@ Evaluation

13 /24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work
[o]e] 000 (o] (o] @®00000000 o]

Evaluation

@ The next benchmark is local

e That is, client and server were started on the same machine

14 /24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

(e]e] [e]e]e} o o 0O®0000000 [e]

Evaluation

File System Performance
1400

1200
1000

800

MB/s

600

400
200
0

/dev/ishm RFS (/dev/shm) RFS (XFS)

o

File Systems
B Write B Read

Read: Quite slow — Write: RFS (XFS) > XFS — dd vs. rfsc?

15 /24

Introduction librfs grfs Evaluation Conclusion and Future Work

0O0@000000

Evaluation

@ The next two benchmarks are remote

o Client and server were started on two separate machines
@ We have a GBit network

o About 119 MB/s maximum throughput

16 /24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

(e]e] [e]e]e} o o 0O00e00000 [e]

Evaluation

Remote File System Performance
120

100

MB/s

Write Read

Operations

M Speed

Write: Almost network maximum — Read: Slight overhead

17 /24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work
[o]e] 000 (o] (o] 0000@e0000 o]

Evaluation

Remote File System Metadata Performance
6000

5000
4000

3000

Operations/s

2000

1000

RFS (/dev/shm) RFS (XFS)
File Systems

M create M stat [J access M unlink

stat and access: Same on /dev/shm and XFS (no writes)
18 /24

librfs gris Evaluation
(o] C 000008000

Introduction

Evaluation

@ The next two benchmarks are remote
o Clients and servers were started on separate machines
o All clients were started on the same machine

@ We have a GBit network
e About 119 MB/s maximum throughput

Conclusion and Future Work

19 /24

Introduction
[o]e]

Evaluation

140

120

100

80

MB/s

rfsd librfs grfs Evaluation Conclusion and Future Work

[e]e]e} o o 0O00000e00 [e]

Global Remote File System Performance

1 Server/Client 1 Server/Client (Direct 1/0) 9 Servers/Clients 9 Servers/Clients (Direct 1/0)
Configurations

B Write B Read

Read: 2GB/s from kernel cache (screws up diagram)

20 /24

Evaluation
000000080

Evaluation

These numbers are quite bad . ..

New performance haek improvement in grfs

o No new diagrams, it was too late :-)

1 server/client

o Normal: 56 MB/s (Write) — 2 GB/s (Read)
o Direct I/O: 112MB/s — 19 MB/s (Read)

Remaining problems

o Normal: Fix write
e Direct I/O: Fix read
e Increasing FUSE's buffer size would suffice

@ Too much overhead for 4 or 16 KB buffers
e 128 KB work well

e Does not work — FUSE bug?

21 /24

Introduction
[o]e]

Evaluation

Operations/s

3000

2500

2000

1500

1000

5

=]
S

rfsd
000

librfs grfs Evaluation
(o] 0O0000000e o]

o

Conclusion and Future Work

Global Remote File System Metadata Performance

1 Server/Client

1 Server/Client (Direct 1/0) 9 Servers/Clients

Configurations

M create M unlink

9 Servers/Clients (Direct 1/0)

22/24

Introduction rfsd librfs grfs Evaluation Conclusion and Future Work
[o]e] 000 (o] (o] 000000000 o]

@ Conclusion and Future Work
@ Future Work

23 /24

Conclusion and Future Work

[]
Future Work

@ Server-side replication v/

e The client — that is, the Global Remote File System — used to
do this

@ Support for High Availability v/
e Global Remote File System should continue working if servers
go offline
e Simply use remaining servers, providing a partial view of the
global file system
o Reconnect on SIGHUP
@ Synchronize multiple Remote File System Daemons
e Unique IDs for all modifying operations
@ Make grfs usable for all users
o Check FUSE's allow_other and default_permissions
e Optimize the Global Remote File System/FUSE
e Container support (?)

24 /24

	Introduction
	Introduction

	Remote File System Daemon
	Motivation
	Overview
	Implementation

	Remote File System Library
	Motivation

	Global Remote File System
	Overview

	Evaluation
	Evaluation

	Conclusion and Future Work
	Future Work

