
Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Remote File System Suite
Softwarepraktikum für Fortgeschrittene

Michael Kuhn

Parallele und Verteilte Systeme
Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

2009-02-05

1 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

1 Introduction
Introduction

2 Remote File System Daemon

3 Remote File System Library

4 Global Remote File System

5 Evaluation

6 Conclusion and Future Work

2 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Introduction

FUSE

Goal was to implement a global network file system

Needed to implement the underlying network file system first

Should be implemented as a FUSE file system

Runs in user space
Relatively easy to implement
Relatively easy to maintain

3 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Introduction

Overview

rfsd – Remote File System Daemon

Low-level network file system

librfs – Remote File System Library

Abstracts protocol implementation

rfsc – Remote File System Client

Basically a simple throughput and metadata benchmark

grfs – Global Remote File System

High-level global network file system

4 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

1 Introduction

2 Remote File System Daemon
Motivation
Overview
Implementation

3 Remote File System Library

4 Global Remote File System

5 Evaluation

6 Conclusion and Future Work

5 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Motivation

A separate protocol was designed

Existing protocols did not meet the requirements

SSH

Does not support separate control and data channels
Data encryption makes transfers too slow

Not possible to deactivate the encryption

FTP

Only possible to write a complete file or append data to it
File listings are hard to parse, because their format is not
well-defined

6 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Overview

Implement our own protocol

Separate control and data channels

No encryption
Control channel can be encrypted via SSH forwarding

Should be as fast as possible

Microscope pumps out 1 GB/s
6 · 2 servers
⇒ 100-200 MB/s

Should be as transparent as possible

Use underlying local file system
Do not stripe files across servers

Should be as safe as possible

Support replication

7 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Implementation

Basically provide remote access to the local file system

Protocol very similar to POSIX

pread(), pwrite(), . . .

Plus some fancy features, of course :-)

Fully multi-threaded

Each connection handled in its own thread
Long-running operations do not block other connections

Background replication

Master-slave concept
One master, multiple slaves
All operations are replicated in a background thread
Write operations are barriers

We do not need to allocate additional memory for background
replication
We do not need to read from the file to preserve memory
(race conditions)

8 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

1 Introduction

2 Remote File System Daemon

3 Remote File System Library
Motivation

4 Global Remote File System

5 Evaluation

6 Conclusion and Future Work

9 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Motivation

Hide all the “ugly” implementation details :-)

Good error reporting via GError

Part of GLib

Some operations require multiple steps

For example: rfs read(), rfs read do(), rfs read end()

10 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

1 Introduction

2 Remote File System Daemon

3 Remote File System Library

4 Global Remote File System
Overview

5 Evaluation

6 Conclusion and Future Work

11 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Overview

Merge multiple file systems into one global namespace

Example:

serv1 has directory /foo, serv2 has directory /bar

$ grfs serv1:6666 serv2:6666 /grfs

$ ls /grfs

> foo bar

12 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

1 Introduction

2 Remote File System Daemon

3 Remote File System Library

4 Global Remote File System

5 Evaluation
Evaluation

6 Conclusion and Future Work

13 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

The next benchmark is local

That is, client and server were started on the same machine

14 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

/dev/shm XFS RFS (/dev/shm) RFS (XFS)
0

200

400

600

800

1000

1200

1400

File System Performance

Write Read

File Systems

M
B

/s

Read: Quite slow — Write: RFS (XFS) > XFS – dd vs. rfsc?
15 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

The next two benchmarks are remote

Client and server were started on two separate machines

We have a GBit network

About 119 MB/s maximum throughput

16 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

Write Read
0

20

40

60

80

100

120

Remote File System Performance

Speed

Operations

M
B

/s

Write: Almost network maximum – Read: Slight overhead
17 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

RFS (/dev/shm) RFS (XFS)
0

1000

2000

3000

4000

5000

6000

Remote File System Metadata Performance

create stat access unlink

File Systems

O
pe

ra
tio

ns
/s

stat and access: Same on /dev/shm and XFS (no writes)
18 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

The next two benchmarks are remote

Clients and servers were started on separate machines
All clients were started on the same machine

We have a GBit network

About 119 MB/s maximum throughput

19 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

1 Server/Client 1 Server/Client (Direct I/O) 9 Servers/Clients 9 Servers/Clients (Direct I/O)
0

20

40

60

80

100

120

140

Global Remote File System Performance

Write Read

Configurations

M
B

/s

Read: 2 GB/s from kernel cache (screws up diagram)
20 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

These numbers are quite bad . . .

New performance hack improvement in grfs

No new diagrams, it was too late :-)

1 server/client

Normal: 56 MB/s (Write) – 2 GB/s (Read)
Direct I/O: 112 MB/s – 19 MB/s (Read)

Remaining problems

Normal: Fix write
Direct I/O: Fix read
Increasing FUSE’s buffer size would suffice

Too much overhead for 4 or 16 KB buffers
128 KB work well

Does not work – FUSE bug?

21 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Evaluation

1 Server/Client 1 Server/Client (Direct I/O) 9 Servers/Clients 9 Servers/Clients (Direct I/O)
0

500

1000

1500

2000

2500

3000

Global Remote File System Metadata Performance

create unlink

Configurations

O
pe

ra
tio

ns
/s

22 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

1 Introduction

2 Remote File System Daemon

3 Remote File System Library

4 Global Remote File System

5 Evaluation

6 Conclusion and Future Work
Future Work

23 / 24



Introduction rfsd librfs grfs Evaluation Conclusion and Future Work

Future Work

Server-side replication X

The client – that is, the Global Remote File System – used to
do this

Support for High Availability X

Global Remote File System should continue working if servers
go offline
Simply use remaining servers, providing a partial view of the
global file system
Reconnect on SIGHUP

Synchronize multiple Remote File System Daemons

Unique IDs for all modifying operations

Make grfs usable for all users

Check FUSE’s allow other and default permissions

Optimize the Global Remote File System/FUSE

Container support (?)

24 / 24


	Introduction
	Introduction

	Remote File System Daemon
	Motivation
	Overview
	Implementation

	Remote File System Library
	Motivation

	Global Remote File System
	Overview

	Evaluation
	Evaluation

	Conclusion and Future Work
	Future Work


