Introduction
[o]e]

memfs Evaluation Conclusion and Future Work
[e]e]e} 0000000 o]

memfs — A FUSE Memory File System

Softwarepraktikum flir Fortgeschrittene

Michael Kuhn

Parallele und Verteilte Systeme
Institut fiir Informatik
Ruprecht-Karls-Universitat Heidelberg

2008-10-28

Introduction memfs Evaluation Conclusion and Future Work
[o]e] [e]e]e} 0000000 o]

@ Introduction
@ Introduction

2/18

Introduction
e0

Introduction

FUSE

@ Goal was to measure the overhead of the FUSE

@ ctfs indicated that FUSE introduces significant overhead
when a large number of files is processed

@ FUSE file systems run in user space

o They use the special device /dev/fuse to communicate with
the kernel part of FUSE

@ More expensive context switches have to be performed

18

Introduction
oe

Introduction

memfs

e What?

Conclusion and Future Work

e A FUSE memory file system
o Like tmpfs

o Why?

o Measure FUSE overhead

o Eliminate the influence of the relatively slow hard disk

e tmpfs for normal users

Introduction

memfs Evaluation
[o]e]

Conclusion and Future Work
[e]e]e}

0000000 [e]

9 memfs

@ Overview
@ /opts directory
@ Complex Operations

Overview

memfs

@ Works like any other file system
@ Selectable backends for directory entries

o Currently hash tables and balanced binary trees are supported
@ chmod, chown, open and utimens are merely empty stubs

e fileop will not run without those

@ Idea: Use empty operations to measure FUSE overhead

6

18

/opts directory

memfs

Like /proc, just for memfs

Can configure options at runtime
Currently only no_data is supported

e Discards any data written to a file
e Returns bogus data
o File size is updated correctly

For example:

o $§ echo 1 > $HOME/memfs/opts/no_data
o $§ cat $HOME/memfs/opts/no_data

18

Complex Operations

So

memfs

me FUSE file system operations are complex
e They are internally made up of several file system operations

setattr()

e After chmod (), chown(), truncate() and utimens() an
implicit getattr() is performed

lookup ()

o After create(), mknod (), mkdir(), symlink(), and link()
an implicit getattr() is performed

close() does not do (too much) implicit work

o Let's use that one

18

Introduction memfs Evaluation
[o]e] [e]e]e} 0000000

© Evaluation
@ Evaluation
@ Costs

Conclusion and Future Work

[e]

9/18

Introduction
[o]e]

Evaluation

opsis

700000

600000

500000

400000

300000

200000

100000

mkdir

memf
[e]e]e}

s

B memfs (Hash
Table)

rmdir

create

l

close

Evaluation Conclusion and Future Work
9000000 o]
125,000 Files

B memfs (Binary [tmpfs
Tree)

[BN BECURETSR

access readdir unlink
stat chmod link delete

/18

Introduction
[o]e]

Evaluation

opsis

700000

600000

500000

400000

300000

200000

100000

memfs Evaluation
[e]e]e} 0@00000 o]
512,000 Files
B memfs (Hash B memfs (Binary [tmpfs
Table) Tree)
rmdir close access readdir unlink
mkdir create stat chmod link delete

Conclusion and Future Work

/18

Introduction
[o]e]

Evaluation

opsis

45000

40000

35000

30000

25000

20000

15000

10000

5000

mkdir

memfs
[e]e]e}

Evaluati
00e00

ion
[o]e)

1,000,000 Files

B memfs (Hash
Tabl

B memfs (Binary
Tree)

Conclusion and Future Work

[e]

rmdir

create

close

stat

access

chmod

readdir

link

unlink

delete

12/18

Introduction
[o]e]

Evaluation

opslis

60000

50000

40000

30000

20000

10000

mkdir

memfs
[e]e]e}

rmdir

create

close

Evaluation

000@000 [e]

memfs (Hash Table)

W 125,000 Files M 512,000 Files [J 1,000,000 Files

stat

access

Lhull

readdir unlink
chmod link delete

Conclusion and Future Work

13/18

Introduction
[o]e]

Evaluation

opslis

60000

50000

40000

30000

20000

10000

mkdir

memfs
[e]e]e}

rmdir

create

close

Evaluation

[e]e]ele] lele) [e]

memfs (Binary Tree)

W 125,000 Files M 512,000 Files [J 1,000,000 Files

stat

access

Lhakl

readdir unlink
chmod link delete

Conclusion and Future Work

14 /18

Introduction
[o]e]

Evaluation

opsis

700000

600000

500000

400000

300000

200000

100000

mkdir

memf
[e]e]e}

rmdir

s

create

close

Evaluation
0000080

tmpfs
H 125,000 Files M 512,000 Files

stat

access

chmod

readdir

link

Conclusion and Future Work

[e]

unlink

delete

15/18

Introduction Evaluation Conclusion and Future Work

Costs

@ tmpfs

o Mode switch into the kernel

e Mode switch out of the kernel
@ memfs
Mode switch into the kernel
Context switch into memfs
Context switch out of memfs
Mode switch out of the kernel

16 /18

Introduction memfs Evaluation Conclusion and Future Work
[o]e] [e]e]e} 0000000 o]

@ Conclusion and Future Work
@ Conclusion and Future Work

17/18

Conclusion and Future Work
[]

Conclusion and Future Work

@ memfs is a memory file system that is configurable at runtime
e Can be easily extended to use arbitrary data structures as
backends
e Basis for benchmarking and — hopefully — tuning of FUSE with
large amounts of files
@ It is hard to measure the overhead with empty stub operations
e FUSE performs implicit getattr() calls for most of them
e release() is one of the few operations that can be used
e Should give a good estimate of the possible maximum that
FUSE is capable of
e Modify the FUSE user-space library to make the implicit
getattr() calls conditional

18/18

	Introduction
	Introduction

	memfs
	Overview
	/opts directory
	Complex Operations

	Evaluation
	Evaluation
	Costs

	Conclusion and Future Work
	Conclusion and Future Work

