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Introduction

FUSE

@ Goal was to measure the overhead of the FUSE

@ ctfs indicated that FUSE introduces significant overhead
when a large number of files is processed

@ FUSE file systems run in user space

o They use the special device /dev/fuse to communicate with
the kernel part of FUSE

@ More expensive context switches have to be performed
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e What?

Conclusion and Future Work

e A FUSE memory file system
o Like tmpfs

o Why?

o Measure FUSE overhead

o Eliminate the influence of the relatively slow hard disk

e tmpfs for normal users
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Overview

memfs

@ Works like any other file system
@ Selectable backends for directory entries

o Currently hash tables and balanced binary trees are supported
@ chmod, chown, open and utimens are merely empty stubs

e fileop will not run without those

@ Idea: Use empty operations to measure FUSE overhead

6

18



/opts directory

memfs

Like /proc, just for memfs

Can configure options at runtime
Currently only no_data is supported

e Discards any data written to a file
e Returns bogus data
o File size is updated correctly

For example:

o $§ echo 1 > $HOME/memfs/opts/no_data
o $§ cat $HOME/memfs/opts/no_data
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Complex Operations

So

memfs

me FUSE file system operations are complex
e They are internally made up of several file system operations

setattr()

e After chmod (), chown(), truncate() and utimens() an
implicit getattr() is performed

lookup ()

o After create(), mknod (), mkdir(), symlink(), and link()
an implicit getattr() is performed

close() does not do (too much) implicit work

o Let's use that one
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Costs

@ tmpfs

o Mode switch into the kernel

e Mode switch out of the kernel
@ memfs
Mode switch into the kernel
Context switch into memfs
Context switch out of memfs
Mode switch out of the kernel
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Conclusion and Future Work

@ memfs is a memory file system that is configurable at runtime
e Can be easily extended to use arbitrary data structures as
backends
e Basis for benchmarking and — hopefully — tuning of FUSE with
large amounts of files
@ It is hard to measure the overhead with empty stub operations
e FUSE performs implicit getattr() calls for most of them
e release() is one of the few operations that can be used
e Should give a good estimate of the possible maximum that
FUSE is capable of
e Modify the FUSE user-space library to make the implicit
getattr() calls conditional
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