FL

SCIENCE-DRIVEN DATA 5;“
MANAGEMENT FOR MULTI-TIERED R”EWSOURCE;;U;%
-AD10S s
STORAGE “STROCCO.
June 23,2016 #REFAGTORING:
HPC-IODC Workshop a};?Lnf““““i; Iegggu

y Lofstead oanda mSERVICEL:

KI?sky, H. Abbasi, Q. Liu, F. Wang ORNl._ E:maggmgﬂ?cggYCRIPTIONSIF
Lofstead, M. Curry, L. Ward sandia SIRUCEUSI R I USS;E::ICE
. Parashar Rutgers Dlsgquul-;mmgratmh
‘Maltzahn UCSC "“‘..HAH@':ement“"SUT I I.I
" DESCRIPTION Licyele™ 14105
. Ainsworth Brown, ORNL ADIOS
J"ﬁ"l‘?ﬂ

v
HDIDS .'."."5?' ~

Hanagement

Nhere Do We Spend Our Time in Science?

50als
* Make the process predictable

* Make the process adaptable E
* Make the process scalable :
* Make the software easy-to-use m

bservation T Publication
* Too much time is spent in managing, moving, storing, retrieving , and turning tt

science data into knowledge
rius specific Goal

» Refactor data so that we can efficiently store, find, retrieve data in predictable
times set by the users, negotiated with the system

IRIUS Story

xascale Apps will generate too much data
e Data needs to be prioritized by the users generating and reading

* Data needs to be reduced, re-organized, from large volumes into different buckets of
importance

e Storage systems may not have the capacity or performance to sustain large datasets

e management of data in multi-tier Storage systems in the data lifecycle w
ecome more difficult to manage

ata access times need to be described by users and negotiated with the
orage system for predictable storage performance

hallenges:

* How can the middleware and storage system understand refactored data?

* How to build scalable metadata searching to find refactored data

* The interplay between data refactoring, data re-generation, and data access tin

’rinciples

rinciple 1: A knowledge-centric system design that allows user
nowledge to define data policies

* Today SSIO layers are written in a stove-pipe fashion, and quite often do not all
optimizations to take place

» Re-design the layers in a highly integrated fashion where users place their
intentions into the system and actions will statically and dynamically take place
optimize for the system and for individual requests

rinciple 2: Predictable performance and quality of data in the SSIO
yvers need to be established so science can be done on the exascale
/stems in a more efficient manner

* Without predictable performance, not only can the runs be slowed down becat
of contentions on shared resources, but also it affects key science decisions

T T —

Jutline

RIUS Building Blocks

ADIOS - A critical library for DOE apps

sed heavily in many LCF/NERSC applications which we partner with

llows our team to rapidly prototype new methods and test them for
oplication data lifecycles

as the ability to describe data utility (XML description)

llows our team to test out hypothesis

1. Accelerator: PIConGPU, Warp

2. Astrophysics: Chimera

3. Combustion: S3D

4.CFD: FINE/Turbo, OpenFoam

5. Fusion: XGC, GTC, GTC-P, M3D,M3D-C1, M3D-K, Pixie3D
6. Geoscience: SPECFEM3D_GLOBE, AWP-ODC, RTM
7. Materials Science: QMCPack

8. Medical: Cancer pathology imaging

9. Quantum Turbulence: QLG2Q

10.Visualization: Paraview, Visit, VTK, OpenCV, VTKm
:uwww.nccs.govzuser—suggortzcenter—groiectszadiosz

DataSpaces to explore placement strategies on
nulti-tier memory/storage hierarchies

Coupled Scientific Workflow Applications

Programming Abstraction
oordination & Scalable Mapping &
Data Sharing Messaging Scheduling

Distributed In-memory Object Store

DART Communication Layer

(Cray Gemini, Cray Portals, Infiniband, IBM DCMF, TCP/IP)

ows our team to stage data across memory and storage hierarchies with different data

icement strategies

The DataSpaces

Simulation 1

Abstraction

put()/pub()

Simulation 2

High-Performance Computin

System

110 Offloading

Simulation 3 _/

get()/sub()

Data Analytics

Prc
Vis!

ilding on our “learning” techniques to optimize data placement for different optimizatior
ategies

)bject Storage
Light Weight File System-inspired philosophy

* Clients bring/opt-in to services they require
* Naming, locking, distributed transactions

Peer-to-peer inspired design
* Ephemeral, diverse servers and clients
e Data and location(s) are decoupled

Addressed systems

* Sirocco (Sandia) http://www.cs.sandia.gov/Scalable_10/sirocco/

* Full control from ownership, in development technology
* Ceph (RedHat)

* Mature, production system with special attention required to address HPC workloads
* DAOS (Intel)

* Next generation Lustre with strong commercial and DOE support, still under
development

Jutline

Data Refactoring

Data Refactoring

ata needs to be refactored so that more important data can be
rioritized, e.g., being placed on the higher tier on the storage systems.

hallenges:

* To understand the cost associated with refactoring data, in terms of CPU cycles
extra memory consumed, and communication.

* Does the refactoring affect the fidelity of the applications? If so, how much?

» After data is refactored, how do we map it to the storage hierarchy? How do we
enforce policy?
* How will data be used? E.g.

e Ais a fundamental variable in a MHD code, but many times the user want the current: //7>
=/ [often looking at the low frequency modes, or V-5

* We need error bounds for our refactored quantities

_ T TO—

Jata Refactoring and Utility Functions

Need to explore what and where
the computation will occur

* Flexibility in location based on past
work

 Flexibility in which operation to
perform on which chunk of data

Code generation or code containers
are potential study targets

Maintaining relationship between
data chunks

Carry attributes from generation to
consumption and feedback into a
utility computation

Application
Memory

Application
Memory

Parallel FS

Campaign

Long Term

Parallel FS

Campaign

Long Term

a. Original memory arrangement

Ne | N P

mjlel]E

o]}
<y
=

b. Refactored and reduced data

hAndpihgelEl -
111'1 ’1TI1|1| B1

71 |Mesh1|n:_2 nizl p2 m2| e2 E2I B3 v2

c. Initial storage layout after data movement settled

E
1

hdndpimle
1418141581

Bi

71 |Mesh1

N2/ n2 p2m2/e2 E2 B2 v2 Mesh2

c. Storage layout at a later point in the data life-cycle

hAndpinielEl —

71 I\Aesh1|

n2 n2 p2 m2 e2| E2 Mesh2

B2

72

Jata Utility

1
Application

Describes how long a data chunk will live at a level
of the storage hierarchy

» Spatial or temporal utility of data
» Utility based on in-data features

Parallel FS

» Utility based on statistical features ngrem |

Utility has a large component from the user and the
use case
* Experimental design factors in here
* Solving a specific scientific problem => specific data utility
function

API for ingesting user preferences and combining
with historical provenance

Dynamic utility for online analysis/visualization use
cases

Parallel FS

a. Original memory arrangement

Memory Ne | M| P

mlelE B

b. Refactored and reduced data

71 IMeshifn.2]n2 | p2 fm2] e2 | E2

Memory
c. Initial storage layout after data movement settled

1111111

Campaign n2 n2| p2 m2je2 | E2 #2 | Mesh2

Utility is a broad description

c. Storage layout at a later point in the data life-cycle

Campaign n2/ n2| p2 im2| e2 |E2 Mesh2

e.g. The utility of Mesh may
defined more explicitly as, fc
example, (priority=1, (time-
NVRAM=8 hours, time-PFS=:
days, time-CAMPAIGN=100
days, time-TAPE=1000 days)
(priority=2, (time-NVRAM=1
hours, time-PFS=4 days, time
CAMPAIGN=100 days, time-
TAPE=300 days).

Jtility-driven Data Placement

oal: Determine placement of data objects vertically across different levels of
e memory hierarchy, e.g., SSD or DRAM, and horizontally at different staging

des
Utility quantifies the relative value of data objects based on anticipated data

read patterns
— Utility based on data access patterns (monitored and learnt at runtime)

and the location of the application and staging nodes within the system

network topology
— For example, data objects with higher data utility are placed closer to the
computing nodes accessing it

xploring Data Staging Across Deep Memory Hierarchies for Coupled Data Intensive Simulation Workflows.
.Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki, S. Klasky, H. Kolla, J. Chen, R. Hager, C. Chang, M.

arashar. |[EEE IPDPS'15, May 2015

\daptive Data Placement For Staging-Based Coupled Scientific Workflows.
). Sun, T. Jin, M. Romanus, H. Bui, F. Zhang, H. Yu, H. Kolla, S. Klasky, J. Chen, M. Parashar. ACM/IEEE SC'15,

lov. 2015.

SIRIUS.

—

derformance

itial tests use 3/5 byte splits for doubles

* XGC particle data -- wrote 819,200,000 particles using 5 nodes (160 processes)
Sith @ ORNL

* Write with no compression :: 10.3s

* The time to split each double from that set of particles into 3 significant and 5 I
significant bytes. :: 4.1s

* The time to write out the 3 byte pieces :: 3.4s
* The time to write out the 5 byte pieces :: 9.3s

aparate read times on a laptop

* Errors: Norms L2: 72028.2 Linf: 0.00109242

e Total ReadTime: 10.3131 decompressTime: 27.9715
* Whole data ReadTime: 34.1505 decompressTime: O

SIRIUS

e —

esults sets

ariety of reading options

-

| Size Time | Time Err | Refactoring Data Err
1| (3)°(3)A | 10s + 3s stride, byte-split | 99%
2 | (2)*(2)A | 90s + 30s stride, byte-split | 58%

3 | (3)°(3)A | 16s + 5s stride, byte-split | 0.01%
4 | (2)°(3)A | 120s | =+ 50s stride, byte-split | 0.01%
5 | (3)°A 1200s | + 30s stride 98%
6 | (3)°A 2400s | =+ 90s stride 58%
7 | (3)A 1350s | & 120s | byte-split 5%

8 | (2)A 2250s | + 120s | byte-split 0.01%
9 | A 36s =+ 65 wavelet 1%

10 | A 3600s | £ 600s none 0%

T T —

Jutline
Auditing

New techniques for “Data Intensive Science”

DITOR: Creating a reduced model to approximate the solution in
ited spatial/temporal dimenion.

sic Idea is that we need a model to generate a close approximatio
the data

sic quantities in Information Theory

ata stream S and for x € S let P.(X=x) =p, € 0,1]
nannon Information Content: h(x) = - log, p,
ntropy H(S) =- 2 p, log, p,

oisy/random data has HIGH ENTROPY

:urrent pI’aCtheS Of tOday Linear interpolation

/ant to write data every mth timestep

* Because of the Storage and |I/O requirements
users are forced to writing less

the users reconstruct their data, u(t), at | u-dy(u) = O(M2 At?) : 2" order interpol

e nt" timestep, they need to interpolate

etween the neighboring timesteps e

* @, (u) = interpolant on coarser grid (stride M), reduce storagemyl/lVl

ssume (C=constant depending on the complexity of the data)
 Original storage cost = 32*N bits (floats)

* New storage cost = 32*N/M bits + { 23 —log, (C M2 At?)}N

* Ratio=(1/M—-1/16 log, M) —1/16 log, At + constant Cost to store ¢, +

Cost to store mantissa of u- ¢

~ompression with an interpolation auditor

Linear interpolation (LA) is the auditor AYAVRYA

If we look at 10MB output, with a stride of 5
e Total output = 50MB for 5 steps

* 10 MB, if we output 1 step, 43MB “typical lossless
compression”, 18MB, using linear auditing but lossless
- M None = Stride 5 ™ Stride 10 m Stride 20 ™ Stride ¢

80 I |
10K 100K ™ 10M ¢

Size of Data Set

Investigating adaptive techniques

10 43 18 430 180
20

10 85 25 850 125 "
10 170 40 1700 100 ’

70

o

0

4.

0

5

0

30

Compression %

Jther types of auditors

he key to better auditors is to understand what you are simulating/
bserving

* Use a reduce model

* Use less resolution

e Use a linear equation for short spatial/temporal regions

nd other ways to refactor
* Precision based re-organization
* Frequency based re-organization - Wavelets

* More knowledgeable auditors
* Cost of data re-generation vs. data storage/ retrieval

torage becomes more than a stream of bytes
* Data + Code + workflow

Jutline

Data Description

Jata Descriptions

ow that data is refactored, how do we describe/annotate data so that
ey can be discovered?

0 capture application knowledge and communicate them to
liddleware/storage

e Data utility

* Relationships between datasets

* Semantics

0 specify user requirements
* QoS: bandwidth, latency
* Policy: E.g., where and how long should my data stay on a storage layer

Jutline

Metadata Searching

_hallenges in metadata searching

‘orage devices rather than a file system: no built-in metadata operations as
art of 10

istributed pieces EVERYWHERE

esilience copies

‘orage devices come and go

erformance characteristics can vary considerably

ck a variety of storage targets based on data “importance”
ifferent data “compression” on different data pieces

'y to “guarantee” performance
* Need to consider decompression/regeneration time if multiple versions exist

nhance placement decision based on predicted future use
e Based on tracking previous use (which needs to be tracked somehow)

Jutline

Fuzzy Predictable Performance

_urrent day end-to-end path is comples:

Parallel File System (PFS)

On Node NVRAM

and/or Burst Buffer Performance Tier Capacity Tier Archive Tier

Autonomic Runtime Optimization

utonomic Objective (AO):
A requirement/objective/goal defined by the user
E.g. minimize data movement, optimize

throughput, etc. Decide

utonomic Policy (AP)

A rule that defines how the objectives should be
achieved, i.e., which mechanisms should be used

E.g. use a specific data placement adaptation to
minimize data movement, etc.

utonomic Mechanism (AM) Specify/Utilize
An action that can be used to achieve an AO

E.g. use topology-aware and access-pattern
driven data placement to minimize data
movement, etc.

Achieve

_hallenges

~alable admission control
* Need scalable control plane (leverage existing work on causal metadata
propagation and online sampling for latency/error trade-offs)

esource-specific schedulers to make performance of resource
redictable

e Example: read/write separation at flash devices

nline sampling to provide quick latency/resolution trade-offs
* Without significantly interfering with ongoing workload

yummary

rius is attempting to redefine I/O based on key findings

* POSIX-compliant block interface does not give the system enough information 1
fully optimize

» Data is too big to keep in one place and current systems purge data without use

intervention
 Variability is too large, and users are not in control of their data

cientific Data is not random data
e There is content to the data

uditing calculations to prioritize, reduce data sizes but keep the
formation is critical to reduce the time of understanding

SIRIUS

e —

