Delta: Data Reduction for Integrated Application Workflows and Data Storage

Jay Lofstead, Greg Jean-Baptiste, Ron Oldfield

Scalable System Software
Sandia National Laboratories
Albuquerque, NM, USA
gflofst@sandia.gov

HPC-IODC

June 23, 2016
The Problem

- Simulation output continues to grow—desired simulation output far larger.

- IO bandwidth to parallel file system not sufficient
 - Burst buffer helps, but can still overwhelm capacity because of cost keeping capacity down

- Lossy techniques may not be appropriate

- Lossless can be computationally expensive

- Passive system level checkpointing is too coarse
Motivation

- LAMMPS tested
 - “crack” example roughly 40-60% of data changed per output (leaving 40-60% UNCHANGED)
 - “melt” example roughly 60-75% of data changed per output (leaving 25-40% UNCHANGED)

- Deal.II tested (Finite Element library)
 - Similar potential savings to “crack” example

25-40%, minimum (60% maximum), data unchanged per output step. Can we use de-duplication techniques to reduce this?
Target architecture

- Use in compute area storage to stage data
The Challenges

1. Reduce data volume losslessly

2. Keep computation overhead as low as possible
 - $O(n)$

3. Work across different numerical methods

4. Keep space overhead reasonable/small
 - $O(n)$
Major Related Work

- Network-level compression not appropriate
 - Extra software required
 - Potentially extensive extra storage space

- ConCORD works on VMs and does not focus on moving data off node

- AI-Ckpt works at the page level leaving opportunity on the table—particularly if huge pages are used

- Isabella does compression, but must sort first
Solution Approach

- KISS in action! :-)
- Simple diff between vars
- Use bitmap of full array size to indicate changed (included) elements
- Maintain the last output to diff against for next
- Performance $O(n)$ (linear scan of data buffer)
- Data Overhead $O(n)$ (save last output)
Target Design

- Trivial changes for clients
- Invisibly operates
- Potential to keep reduced data longer
BP Format Adaptation

- Largely ADIOS/BP still, but some changes to encode differences

Full Data Set

- Group id = 1
- Epoch = 1
- Current rank = 1
- Group name length = 4
- Group name = “vars”
- Variable count = 1
- Variable

Reduced Data Set

- Group id = 1
- Epoch = 2
- Current rank = 1
- Variable

<table>
<thead>
<tr>
<th>Status = NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id = 1</td>
</tr>
<tr>
<td>Name length = 6</td>
</tr>
<tr>
<td>Name = “vector”</td>
</tr>
<tr>
<td>Dim count = 1</td>
</tr>
<tr>
<td>Global = false</td>
</tr>
<tr>
<td>Dim sizes = 5</td>
</tr>
<tr>
<td>Type = 1 (integer)</td>
</tr>
<tr>
<td>Type size = 4</td>
</tr>
<tr>
<td>Total size = 20</td>
</tr>
<tr>
<td>Data = 1,3,5,7,9</td>
</tr>
<tr>
<td>Bit count = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status = SOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id = 1</td>
</tr>
<tr>
<td>Dim count = 1</td>
</tr>
<tr>
<td>Dim sizes = 5</td>
</tr>
<tr>
<td>Total size = 8</td>
</tr>
<tr>
<td>Data = 2,6</td>
</tr>
<tr>
<td>Bit count = 5</td>
</tr>
<tr>
<td>Bit vector = 1,0,1,0,0</td>
</tr>
</tbody>
</table>
Evaluation Setup

- Chama machine at Sandia
 - 1232 nodes; 16 cores, 32 GB/node; 4x QDR InfiniBand; RHEL 6

- Molecular Dynamics (LAMMPS)
 - “crack” detection simulation
Data Volume Differences

- Blue is potential total output size, red is actual
- Green shows percentage of full output
Conclusion and Futures

- Simple, low complexity, low overhead approach can be very effective for multiple numerical methods, but not all
 - PIC codes are probably poor candidates, for example

- Applications just need to use the “delta” transport to gain advantage and no visible impact
 - Example does an expansion at the receiver automatically for test version

- Could expand to storage as a new BP format version saving space and time

- Currently only arrays considered—scalars are always sent

- Diffs represented in evaluation are against initial data set—savings could be much better if the last output always saved instead
Questions?

gflofst@sandia.gov