Data Management@HLRS

Thomas Bönisch
Outline

- HLRS
- What our users do
- What we currently provide
- What our users (really) want
- What we (the HPC community) plan to provide
- What we probably should and potentially can provide
Outline

• HLRS
• What our users do
• What we currently provide
• What our users (really) want
• What we (the HPC community) plan to provide
• What we probably should and potentially can provide
The High Performance Computing Center Stuttgart (HLRS)

- Central Unit of Universität Stuttgart
 - Supercomputing since 1968
- 1st German National Supercomputing Center
 - Founded 1996
 - Service for German researchers
- Gauss Center for Supercomputing
 - Founded 2007, Partners: Jülich and Munich
- Open for European users since 2004
- Partner for German industry
Outline

- HLRS
- What our users do
- What we currently provide
- What our users (really) want
- What we (the HPC community) plan to provide
- What we probably should and potentially can provide
Main Areas of Users’ Research

- Aeroacoustics
- Aerodynamics
- Astrophysics
- Bioinformatics
- Combustion
- Fluid-Structure Interaction
- Helicopter Aerodynamics
- Meterology
- Medical Imaging
- Nanotechnology
- Solid State Physics
- Turbo Machinery
- Turbulence Phenomena
Convection permitting Channel Simulation

• Institut für Physik und Meteorologie, Universität Hohenheim
 – Wulfmeyer, Warrach-Sagi, Schwitalla

• Vertically integrated water vapor nicely shows the fine scale structure of the atmosphere.
• Visible is the Monsoon circulation over India, Typhoon Soulik close to Taiwan and a tropical depression in the Gulf of Mexico.
• The sharp gradient of moist air masses over the North Atlantic is also visible. Low pressure systems influencing Europe are developing along this line.
Convection permitting Channel Simulation

Valid: 2013-07-11 09:00:00

- WRF model, 3.3 km resolution
- 3500 nodes=84000 cores; 330 TB data; 84 system hours
Prediction of the turbulent flow field around an axial fan

Example: Courtesy of M. Meinke, AIA, RWTH Aachen
Example: Flow around axial fan

- 1 billion cell mesh
- 100 TB of result data
- Statistical analysis
- New methods to detect structures within turbulence
- 1PB data sets foreseeable

Example: Courtesy of M. Meinke, AIA, RWTH Aachen
Outline

• HLRS
• What our users do
• What we currently provide
• What our users (really) want
• What we (the HPC community) plan to provide
• What we probably should and potentially can provide
Hazel Hen

- Cray XC 40
- Performance
 Peak: 7.42 PetaFlops
 Linpack: 5.64 PetaFlops
 HPCG: 138 TeraFlops
 HPCG/Linpack 2.4%

HPCG (Nov.2015): Nr. 1 in Europe
HLRS Phase II – Hazel Hen

- Cray XC 40
- Predecessor System homogenously integrated
- Configuration:
 - Peak Performance ~7.42 Petaflops
 - 7712 nodes
 - Each Node has 2 sockets
 - Intel Xeon E5-2680v3 (Haswell@ 2.5GHz 12 Cores each)
 leading to 185,088 cores
 - 128 GB main memory per node (5.3 GB/core) → 965 TB in total
 - Aries network
 - 12PB storage capacity @ ~ 350GB/s IO bandwidth
 - External Access Nodes, Pre- & Postprocessing Nodes, Remote Visualization Nodes
 - ~3MW maximal power consumption
Conceptual Architecture

StorageSwitch Fabric (QDR)

Lustre OSS

Lustre – global work

Login Servers

MDS

HPSS Data Mover

Management Server

Visualization Server

Pre- & Post-processing

NAS - home
I/O architecture

• Hardware
 – 7+7 MDS/MGS Servers
 – 112 OSS Servers
 – 22 Dual RAID controllers
 – Lustre „appliance“
 • MDS + 13 SSUs
 – 8480 Hard disks

• ~12 PB Storage
 ~370 GB/s measured total BW
Usage numbers & issues

• One file system for general usage
 – 3.5 mio files
 – ~ 500 TB usage (out of ~700 TB)

• Other file systems by invitation only
 – Power users (capacity, throughput)
 – Industry

• Issues
 – Small files
 – I/O performance of application is rarely looked into
Typhoon Soulik

TOA OUTGOING LONG WAVE (W m⁻²)

85 100 115 130 145 160 175 190 205 220 235 250

UNIVERSITY OF HOHENHEIM
The issues

• I/O was and is a problem of this code
• 1st shot:
 – 1 GB/s throughput
• After optimization
 – 7.5 GB/s throughput
 – 2 days of calculation.
 – 1.5 days of I/O
• File System potential: 75 GB/s (measured !!!)
• Software: netcdf4
Outline

- HLRS
- What our users do
- What we currently provide
- What our users (really) want
- What we (the HPC community) plan to provide
- What we probably should and potentially can provide
Users say: „I just want to ...“

- do my science
- run my application
- Do not care (too much) about the system
- Not interested in HPC in principle
Outline

• HLRS
• What our users do
• What we currently provide
• What our users (really) want
• What we (the HPC (I/O) community) plan to provide
• What we probably should and potentially can provide
Node view

CPU

Level 1 Cache

Level 2 Cache

Level 3 Cache

Memory

Fastest

Fast

Slower

Slowest
Future node view
Future I/O Path

• Burst Buffer
 – Plus some (proprietary) Software

• Flash Pools
 – Plus some (proprietary) Software

• Parallel File System
 – Plus some (proprietary) Interfaces to optimize
Software

- Vectorization
- Cache Optimization
- OpenMP (~300 pages)
- MPI (~800 pages)
- MPI-IO or HDF5 or NetCDF or ... (??? Pages)
- I/O Optimization
 - Proprietary libraries
 - New nice libraries
 - Probably some directives
 - API of the FS
Outline

• HLRS
• What our users do
• What we currently provide
• What our users (really) want
• What we (the HPC community) plan to provide
• What we probably should and potentially can provide
Why not

• Use NV-Memory really as a persistent memory
 – Byte addressable (SCM → MCS, Memory Class Storage)

• Give it an easy Interface
 – like malloc, free, added information about persistency

• Allow for some structure and naming
 – Allow putting things logically together which belong together (e.g. like HDF5 structure does)

• Use today's storage as easy to use back end
 – Mainly automatic pre stage-in, and post stage-out
Prospects

• This could become a game changer
• Working methods will change
• Life for users will become (much) easier
• Life for admins, too
• Costs? (less HW in file system \leftrightarrow NVRAM costs)
• Quite some research and development necessary