H L R S

Data Management@HLRS

Thomas Bönisch

HLRS

28.06.2016

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC community) plan to provide
- What we probably should and potentially can provide

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC community) plan to provide
- What we probably should and potentially can provide

The High Performance Computing Center Stuttgart (HLRS)

Central Unit of Universität Stuttgart

- Supercomputing since 1968
- 1st German National Supercomputing Center
 - Founded 1996
 - service for German researchers
- Gauss Center for Supercomputing
 - Founded 2007, Partners: Jülich and Munich
- Open for European users since 2004
- Partner for German industry

HLRS :: 28.06.2016 ::

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC community) plan to provide
- What we probably should and potentially can provide

Main Areas of Users' Research

- Aeroacoustics
- Aerodynamics
- Astrophysics
- Bioinformatics
- Combustion
- Fluid-Structure Interaction
- Helicopter Aerodynamics
- Meterology
- Medical Imaging
- Nanotechnology
- Solid State Physics
- Turbo Machinery
- Turbulence Phenomena

Convection permitting Channel Simulation

 Institut f
ür Physik und Meteorologie, Universit
ät Hohenheim

- Wulfmeyer, Warrach-Sagi, Schwitalla
- Vertically integrated water vapor nicely shows the fine scale structure of the atmosphere.
- Visible is the Monsoon circulation over India, Typhoon Soulik close to Taiwan and a tropical depression in the Gulf of Mexico.
- The sharp gradient of moist air masses over the North Atlantic is also visible. Low pressure systems influencing Europe are developing along this line.

: 28.06.2016 **::** 7

Convection permitting Channel Simulation

Valid: 2013-07-11_09:00:00

- WRF model, 3.3 km resolution
- 3500 nodes=84000 cores; 330 TB data; 84 system hours

∷ 28.06.2016 **∷** 8

Prediction of the turbulent flow field around an axial fan

Example: Courtesy of M.Meinke, AIA, RWTH Aachen

Example: Flow around axial fan

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

- 1 billion cell mesh
- 100 TB of result data
- Statistical analysis
- New methods to detect structures within turbulence
- 1PB data sets foreseeable

Example: Courtesy of M.Meinke, AIA, RWTH Aachen

HLRS ## 28.06.2016 ## 10

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC community) plan to provide
- What we probably should and potentially can provide

Hazel Hen

- Cray XC 40
- Performance

Peak:

7.42 PetaFlops

Linpack:

5.64 PetaFlops

HPCG:

138 TeraFlops

HPCG/Linpack

2.4%

HLRS Phase II – Hazel Hen

- Cray XC 40
- Predesessor System homogenously integrated
- Configuration:
 - Peak Performace ~7.42 Petaflops
 - 7712 nodes
 - Each Node has 2 sockets
 - Intel Xeon E5-2680v3 (Haswell@ 2.5GHz 12 Cores each) leading to 185,088 cores
 - 128 GB main memory per node (5.3 GB/core) → 965 TB in total
 - Aries network
 - 12PB storage capacity @ ~ 350GB/s IO bandwidth
 - External Access Nodes, Pre- & Postprocessing Nodes, Remote Visualization Nodes
 - ~3MW maximal power consumption

Conceptual Architecture

I/O architecture

- Hardware
 - 7+7 MDS/MGS Servers

- 112 OSS Servers
- 22 Dual RAID controllers
- Lustre "appliance"
 - MDS + 13 SSUs
- 8480 Hard disks
- ~ 12 PB Storage
 - ~ 370 GB/s measured total BW

HLRS ## 28.06.2016 ## 15

Usage numbers & issues

One file system for general usage

- 3.5 mio files
- \sim 500 TB usage (out of \sim 700 TB)
- Other file systems by invitation only
 - Power users (capacity, throughput)
 - Industry
- Issues
 - Small files
 - I/O performance of application is rarely looked into

:: HLRS **::** 28.06.2016 **:: 18**

Typhoon Soulik

∷ 28.06.2016 **∷** 19

The issues

I/O was and is a problem of this code

- 1st shot:
 - 1 GB/s throughput
- After optimization
 - 7.5 GB/s throughput
 - 2 days of calculation.
 - 1.5 days of I/O
- File System potential: 75 GB/s (measured !!!)
- Software: netcdf4

:: HLRS **::** 28.06.2016 **:: 20**

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC community) plan to provide
- What we probably should and potentially can provide

Users say: "I just want to ..."

- do my science
- run my application
- Do not care (too much) about the system
- Not interested in HPC in principle

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC (I/O) community) plan to provide
- What we probably should and potentially can provide

H L R S

Node view

•

:: 28.06.2016

Future node view

:: 28.06.2016

- Flash Pools
 - Plus some (proprietary) Software
- Parallel File System
 - Plus some (proprietary) Interfaces to optimize

HLRS ## 28.06.2016 ## **27**

Software

- Vectorization
- Cache Optimization
- OpenMP (~300 pages)

- MPI (~800 pages)
- MPI-IO or HDF5 or NetCDF or ... (??? Pages)
- I/O Optimization
 - Proprietary libraries
 - New nice libraries
 - Probably some directives
 - API of the FS

- HLRS
- What our users do
- What we currently provide
- What our users (really) want

- What we (the HPC community) plan to provide
- What we probably should and potentially can provide

Why not

- Use NV-Memory really as a persistent memory
 - Byte adressable (SCM → MCS, Memory Class Storage)
- Give it an easy Interface
 - like malloc, free, added information about persistency
- Allow for some structure and naming

- Allow putting things logically together which belong together (e.g. like HDF5 structure does)
- Use todays storage as easy to use back end
 - Mainly automatic pre stage-in, and post stage-out

:: HLRS **::** 28.06.2016 **::** 30

Prospects

- This could become a game changer
- Working methods will change

- Life for users will become (much) easier
- Life for admins, too
- Costs? (less HW in file system ←→ NVRAM costs)
- Quite some research and development necessary

:: HLRS :: 28.06.2016 :: 33