Darshan: state of the project and new features

Phil Carns and Shane Snyder
Mathematics and Computer Science Division
Argonne National Laboratory
carns@mcs.anl.gov, ssnyder@mcs.anl.gov

SC15 BoF: Analyzing Parallel I/O
Austin, Texas
November 2015

http://www.mcs.anl.gov/research/projects/darshan/
What is Darshan?

Darshan (Sanskrit for “sight”) is a scalable HPC I/O characterization tool. It is designed to capture an accurate picture of application I/O behavior with minimum overhead.

- No code changes, easy to use
 - *Negligible performance impact*: just “leave it on”
 - Enabled by default at ALCF, NERSC, and NCSA
 - Used on a case-by-case basis at many other sites

- Produces a summary of I/O activity for each job, including:
 - Counters for file access operations
 - Time stamps and cumulative timers for key operations
 - Histograms of access, stride, datatype, and extent sizes

- Can be used to observe and tune individual applications or to capture a broad view of the platform workload
Darshan analysis example

Example: Darshan-job-summary.pl produces a 3-page PDF file summarizing various aspects of I/O performance

This figure shows the I/O behavior of a 786,432 process turbulence simulation (production run) on the Mira system at ANL

- Percentage of runtime in I/O
- Access size histogram
- Access type histograms
- File usage

File Count Summary (estimated by I/O access offsets)

<table>
<thead>
<tr>
<th>type</th>
<th>number of files</th>
<th>avg. size</th>
<th>max size</th>
</tr>
</thead>
<tbody>
<tr>
<td>total opened</td>
<td>17</td>
<td>199G</td>
<td>1.6T</td>
</tr>
<tr>
<td>read-only files</td>
<td>1</td>
<td>2.0K</td>
<td>2.0K</td>
</tr>
<tr>
<td>write-only files</td>
<td>13</td>
<td>260G</td>
<td>1.6T</td>
</tr>
<tr>
<td>read/write files</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>created files</td>
<td>13</td>
<td>260G</td>
<td>1.6T</td>
</tr>
</tbody>
</table>

jobid: 149563 uid: 6729 nproces: 786432 runtime: 2751 seconds
What’s new?

- Darshan was first released to the public in 2009
- Most recent releases:
 - Stable: Darshan 2.3.1 (March 2015)
 - Preview: Darshan 3.0.0-pre2 (November 2015)

- New features:
 - Integration with CODES workload model API (IOWA)
 COMPLETE (stable release)
 - Modularized library and file format
 COMPLETE (preview release)
 - Ability to capture data even if application exits abruptly
 IN PROGRESS
CODES workload model integration

- CODES exascale storage simulation toolkit includes an interface for generating I/O workloads called IOWA
 - Interface allows I/O workloads to be generated from a range of sources (I/O traces, I/O kernels, synthetic I/O descriptions, etc.)
 - I/O analysis tools can leverage workloads from different sources using consistent interface

- We have developed a workload generation method in IOWA for converting Darshan I/O logs into complete I/O workloads

- “Techniques for modeling large-scale HPC I/O workloads”
 - Presented @ PMBS 2015
Modularized Darshan version (3.0)

- Darshan redesigned to expose an interface allowing the addition of new *instrumentation modules*
 - An *instrumentation module* is a Darshan component responsible for gathering I/O data from a specific system component
 - I/O libraries (POSIX, MPI-IO, HDF5, PnetCDF, ...)
 - FS interfaces (e.g., Lustre API)
 - System-specific data (e.g., BG/Q or Cray)

- Instrumentation modules register with Darshan when they have data to contribute
 - Darshan assigns memory to modules for storing I/O data
 - Instrumentation module provide callback functions so Darshan can interface with them at shutdown time
Modularized Darshan version (3.0)

- At shutdown, Darshan:
 - Retrieves I/O data from each module
 - Compresses data
 - Collectively writes data to Darshan log
Robust Darshan data capture

- Darshan coverage reduced by applications that do not shut down properly
 - Darshan’s shutdown procedure hooks into MPI_Finalize()
 - Typical causes are running to wall-clock limit or crashing

- Approach:
 - Persist Darshan I/O characterization data structures to storage as application runs
 - I/O strategy?
 - Storage location?
 - Granularity of data?
 - Clean-up scripts to merge I/O characterization data structures into standard Darshan log format

For more information and downloads:

http://www.mcs.anl.gov/research/projects/darshan/

This material is based on work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computer Research Program under contract DE-AC02-06CH11357. The research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is a DOE Office of Science User Facility.