
Activities Towards High Availability
of Parallel I/O at the K computer

Yuichi Tsujita1,2, Fumiyoshi Shoji1, Atsushi Hori1,2,
Atsuya Uno1, Keiji Yamamoto1, Toyohisa Kameyama1,2, Yutaka Ishikawa1

1. RIKEN AICS
2. JST CREST

HPC-IODC (July 16, 2015, Frankfurt, Germany)

Outline

1. Overview of the K computer
2. R&D Status of High Performance MPI-IO on the K

computer
3. FEFS Operation Status
4. Summary

Overview of the K computer

System Configuration of the K computer

Node
CPU×1
ICC×1
memory

128GFLOPS
16GiB

System Board(SB)
Node×4

512GFLOPS
64GiB

Compute Rack
SB×24
IOSB×6

12.3(13.1)TFLOPS
1.50(1.59)TiB

Full System
Compute Rack × 864

2 Cabinets
Compute Rack × 4
Disk Racks × 1

49.2(52.4)TFLOPS

6.00(6.38)TiB

10.6(11.3)PFLOPS
1.27(1.34)PiB

()included IO node performance and memory capacity

500mm x 500mm

800mm x 800mm

4000mm x 800mm

40 m x 40 m

4

Tofu Interconnect
• Computing nodes with the Tofu interconnect

– Tofu : Torus Fusion

1 system board
(4 computing nodes) 6D mesh/torus using the Tofu interconnect

・Axis : X, Y, Z, a, b, c
・X,Z,b : torus (Z=0: I/O node), Y, a, c : Mesh
・Network size : (X, Y, Z, a, b, c) = (24, 18, 17, 2, 3, 2)

1 Tofu-unit
(2x3x2 nodes)

Hardware Configuration of the K computer

Local File System(LFS)

(11PB)

Global File System(GFS)

(30PB)

 Control & Management network

Frontend

Servers

Internet

I/O nodes

The K computer

Compute nodes

6D mesh/torus network

Pre/Post

Server

Users

Global I/O network

Management

Servers

Control

Servers

of CPU

Memory capacity

82944

1.27PiB

LFS: Performance oriented
GFS: Capacity and reliability oriented

FEFS(LFS) and Tofu in the K computer
• Network Configuration of a Local File System (LFS)

Computing Nodes

Local File System

I/O Nodes

OSS OSS OSS OSS OSS OSS

z = 16

z = 2

z = 1

z = 0

Fibre Channel

…

X,Y,a,b,c-axis

Z-axis

• I/O nodes are located on z=0 of z-axis.
• Every OSTs are accessible from I/O nodes via Fibre Channel

interconnects
• Accessing a target OST through an OSS on an I/O node

OSTs

* FEFS : Fujitsu Exabyte File System developed by
Fujitsu based on Lustre technology

R&D Status of High Performance MPI-IO
on the K computer

Software Stack of Parallel I/O
• Our focus on parallel I/O

Parallel File System (Lustre, FEFS, PVFS2, …)

Parallel Computing Application

Middleware (MPI (MPI-IO), OpenMP, …)

Application oriented I/O interface (HDF5, PnetCDF, …)

Lower layer

Upper layer

MPI-IO on the K computer

• HDF5, PnetCDF

– Widely used application oriented I/O libraries (HDF5, PnetCDF,
…)

– MPI-IO is used in underlying parallel I/O layer

– MPI-IO performance improvement is essential to cope with a
huge scale of data management.

• Performance Improvement of MPI-IO on the K computer

– Optimization of an MPI-IO implementation named ROMIO

– Affinity-aware optimizations for FEFS and Tofu interconnect
• Optimizations suitable for FEFS striping layout with topology-awareness

for Tofu interconnect

Collective MPI-IO Using Lustre

• Collective I/O

MPI_COMM_WORLD

write

a. Independent I/O
• Large overhead in data

communications
• Bottleneck in the

representative process to
perform local I/O

Parallel file system (e.g., Lustre, PVFS2, …)

MPI_COMM_WORLD

MPI_File_write_all

b. Collective I/O
• High throughput by using parallel I/O
• Suitable for parallel file systems such as Lustre

Data transfer

Bottleneck

High aggregated throughput

Target Collective MPI-IO Access Pattern

 Typical MPI-IO access patterns
 APIs are based on the MPI standard.

We are focusing on this pattern.

12 PDP 2014, February 13, 2014

MPI-IO (ROMIO)

ADIO common layer

File system (Lustre, FEFS, PVFS2, …)

ad_pvfs2 ad_lustre … ad_fefs

Software Stack of ROMIO

• ROMIO
–Widely used MPI-IO implementation available in MPICH or

OpenMPI
–supports many kinds of file systems such as Lustre, FEFS, PVFS2,

and so forth

ROMIO

Parallel I/O
in upper layer

ADIO

HDF5, PnetCDF, …

Application

Optimizations for FEFS

• FJMPI (based on OpenMPI)

– with Fujitsu’s enhanced implementations suitable
for the K computer

– MPI-IO is available by using ROMIO enhanced for
FEFS.

• ADIO for FEFS supports file accesses to FEFS.

2-D Array Data Accesses in Parallel I/O

• Example of I/O accesses for two-dimensional data

Non-contiguous
accesses in every
process

Two-Phase I/O

● Two-phase I/O (TP-IO) in collective write for non-contiguous file accesses

 Every file access is aligned to a collective buffer (hereinafter, CB).

 Repetitions of file accesses and data exchanges

Data exchanges (MPI_Isend/MPI_Irecv)

write

Current ADIO for FEFS
• Previous FJMPI (until Feb. 2015) had the following problems.

 Network contention among aggregator processes and OSTs

 Performance degradation due to many I/O requests on each OST

File domain of process 0 File domain of process 1

File view

File domain of process 2

Proc. 0
Proc. 1
Proc. 2

Stripe size

Aggregator process 0 Aggregator process 1 Aggregator process 2

OST #0 OST #1 OST #2

Partitioned access pattern

Contention

Large number of I/O requests leads to performance degradation.

Striping Layout-Aware ADIO for Lustre

• Striping data oriented data aggregation in ADIO for Lustre
– Pros : Stripe pattern oriented aggregation leads to higher I/O throughput.

– Cons : Mismatches in aggregation scheme in two-phase I/O

File domain of process 2 File domain of process 1 File domain of process 0

File view
Proc. 0
Proc. 1
Proc. 2

Stripe size

Aggregator process 0 Aggregator process 1 Aggregator process 2

OST #0 OST #1 OST #2

Partitioned access pattern

Each aggregator only accesses the one OST (Effective accesses)

Current ROMIO for FEFS

• Aggregator mapping mismatches for FEFS and Tofu
– [Current status] ascending mapping order from rank=0, which does not care

process placement topology on the Tofu interconnects and FEFS

MPI process@
Computing
nodes

Storage
(OSTs)

OSSs@
I/O nodes

0

< Process mapping in X->Y->Z order for 2x3x4 nodes >

z-axis
of Tofu

z=0

z=1

z=2

1 2 3 4 5

6 7 8 9 10 11

18 19 20 21 22 23

12 13 14 15 16 17

MPI rank

• 12 OSTs
• All the MPI processes are assumed to be aggregators.

Contention

Large number of I/O requests leads to performance degradation.

i ii
iii

Striping round

Striping Layout-Aware Aggregation

– Simplified communication for lesser contention

– Reduction of the number of I/O requests on each OST

Grouping aggregators which access the same OST
on the same z-axis

Further optimization

< Process mapping in X->Y->Z order for 2x3x4 nodes >

• 12 OSTs
• All the MPI processes are assumed to be aggregators.

MPI process@
Computing
nodes

Storage
(OSTs)

OSSs@
I/O nodes

OST#0 OST#1 OST#2 OST#3 OST#4 OST#5 OST#6 OST#7 OST#8 OST#9 OST#10 OST#11

0

z-axis of
Tofu

z=0

z=1

z=2

1 2 3 4 5

6 7 8 9 10 11

18 19 20 21 22 23

12 13 14 15 16 17

Striping round

1st striping round
2nd striping round

ii i

Aggregator Layout Optimization

– Simplified communication for lesser contention

– Reduction of the number of I/O requests on each OST

MPI process@
Computing
nodes

Storage
(OSTs)

OSSs@
I/O nodes

OST#0 OST#1 OST#2 OST#3 OST#4 OST#5 OST#6 OST#7 OST#8 OST#9 OST#10 OST#11

0

z-axis of
Tofu

z=0

z=1

z=2

1 2 3 4 5

6 7 8 9 10 11

18 19 20 21 22 23

12 13 14 15 16 17

Grouping aggregators which access the same OST
on the same z-axis

Further optimization

< Process mapping in X->Y->Z order for 2x3x4 nodes >

• 12 OSTs
• All the MPI processes are assumed to be aggregators.

i
ii

Striping round

z=1

z=2

z=3

z=4

z=5

z=16

z=6

z=15

< Example: 2 requests along z-axis case >

Time

0:0 0:1 0:2 0:7

1:0 1:1 1:2 1:7

7:0 7:1 7:7

Group#0

Group#1

Group#7

Group#0

Group#1

Group#2

Group#7

Isend/Irev pairs are issued
from group #0 to group #7.

Stepwise Data Exchanges
• Stepwise MPI_Isend/MPI_Irecv associated with I/O throttling

：data exchanges between group#0 and group#1 0:1

Order of
throttling

The faster data exchange starts,
the faster write operation starts.

write

write

＊Length along the z-axis = the number of I/O requests in throttling

• Collective MPI-IO evaluation using HPIO benchmark
– Original ROMIO (orig) vs. optimized ROMIO

– Evaluation with or without “stepwise data exchanges”

Performance Evaluation using HPIO Benchmark

Totally about 730 GiB data was generated per process. (Weak scaling)

HPIO parameters

Region size 5,994 B

Region space 256 B

Region count 122,919

< Data layout of HPIO benchmark >

Implementation Striping
layout aware

Aggregator
layout aware

I/O throttling

original No No No

str_agg_aware Yes Yes No

throt_{1,2,4,8,16} Yes Yes Yes

HPIO Benchmark Results
• HPIO benchmark result (3,072 processes@8x12x32 nodes)

 Stepwise MPI_Isend/MPI_Irecv : On / Off

• Applying throttling only is not effective.
• Combination of throttling with step-by-step MPI_Isend/MPI_Irecv leads to higher I/O

performance.

Throttling only
Throttling + step-by-step

MPI_Isend/MPI_Irecv

• orig: current ROMIO@K-computer
• str_agg_aware: optimization in striping data layout at aggregators & aggregator layout
• throt_(1,2,4,8)： Throttling in FEFS accesses in addition to the “str_agg_aware” optimization

(numbers stand for the number of I/O requests in throttling.)

region size: 5,992 B
region space: 256 B
region count: 122,919

HPIO Benchmark Results (cont’d)
• Comparison with the MPI_Alltoallv implementation in data exchange

region size: 5,992 B
region space: 256 B
region count: 122,919

• coll: MPI_Alltoallv version instead of MPI_Isend/MPI_Irecv in data exchanges
• coll_throt_4: Same implementation with “coll” with applying throttling in FEFS accesses with 4

I/O requests
• throt_(1,2,4,8)： Throttling in FEFS accesses (numbers stand for the number of I/O requests in

throttling.)

 Throttling with step-by-step MPI_Isend/MPI_Irecv also outperformed collective
data exchange case (coll) and its throttling version (coll_throt_4).

 Step-by-step MPI_Isend/MPI_Irecv data exchanges with throttling in FEFS
accesses leads to the most highest I/O throughput at this moment.

< HPIO benchmark setting >

* All the cases in the figure are using
striping data layout in aggregation
and aggregator layout optimization.

R&D Status and Future Plan

• Throttling and stepwise MPI_Isend/MPI_Irecv seems to be
useful to achieve high I/O throughput in collective I/O using
ROMIO on the K computer.

• Future Plan
• Implementation of the optimized ROMIO into HDF5 or PnetCDF for high

performance I/O

• Deployment of the proposed I/O throttling with cooperative stepwise
data exchanges at other platform (e.g. large scale of InfiniBand PC
cluster system)

FEFS Operation Status

Availability of the whole system since Sep. 2012

• In-operation and scheduled maintenance amount to 97.78%

• File system failures cause irregular stops.

(F. Shoji et al., “Long term failure analysis of 10 petascale supercomputer,” (Best poster
awarded) poster presentation in HPC in ASIA session of the ISC’15 (2015))

The operation of the K computer is highly stable.

< From Sep. 2012 to Mar. 2015 >

System failures of LFS in detail

< From Sep. 2012 to Mar. 2015 >

Summary

• Affinity-awareness in collective MPI-IO outperformed the original
one by taking care of FEFS striping access layout and the Tofu
interconnect configuration.

• Furthermore I/O throttling with stepwise MPI_Isend/MPI_Irecv
improved I/O performance on FEFS.

• Most of failures in the K computer comes from disk failures in the
local file system built on FEFS. However, the failure rate is quite
small (1.38% in more than 2 year operation time). At this moment,
operation of the K computer is very stable with many efforts by
operation management group.

Acknowledgment

• The authors would like to thank Fujitsu for providing ADIO
software for FEFS and useful technical information.

• The authors also would like to thank members of System
Software Research Team at RIKEN AICS.

• This research work is partially supported by JST CREST.

References
• Y. Tsujita, A. Hori, and Y. Ishikawa, “Locality-Aware Process Mapping

for High Performance Collective MPI-IO on FEFS with Tofu
Interconnect,” In Proceedings of the 21th European MPI Users'
Group Meeting (Challenges in Data-Centric Computing), ACM (2014).

• Y. Tsujita, A. Hori, T. Kameyama, and Y. Ishikawa, “I/O Throttling and
Cooperative Stepwise Data Exchanges in Two-Phase I/O Towards
High Performance Collective MPI-IO,” (submitted to ICPADS’15).

• K. Yamamoto et al., “The K computer Operations: Experiences and
Statistics,”, ICCS2014 (2014).

• K. Yamamoto et al., “Analysis and Elimination of Client Eviction on a
Large Scale Lustre Based File System,” LUG2015 (2015).

• F. Shoji et al., “Long term failure analysis of 10 petascale
supercomputer,”, poster presentation in HPC in ASIA session of the
ISC’15 (2015).

