Um Mehrkernprozessoren und Multiprozessoren effizient zu nutzen, genügt es nicht, ein serielles Programm zu schreiben. Vierkernsysteme sind auch schon bei Arbeitsplatzrechnern weit verbreitet. Standards wie MPI und OpenMP, erlauben es, in den Programmiersprachen C(++) und Fortran Code zu schreiben, welcher auch auf Hochleistungsrechnern lauffähig ist.
Im Praktikum werden wir das parallele Programmieren mit MPI und OpenMP erlernen und auch eigenständige Anwendungen (z.B. Spielelöser) in Gruppen entwickeln. Im Vergleich zu der Vorlesung Hochleistungsrechnen werden wird der Fokus auf der Praxis liegen.
Beachten Sie auch unsere allgemeinen organisatorischen Hinweise zu Praktika.
Ziel des Praktikums ist es, aktuelle Parallelisierungskonzepte kennen zu lernen und Problemstellungen im Team zu bearbeiten. Die Studierenden gewinnen eine Übersicht über hilfreiche Werkzeuge zur Entwicklung und Bewertung von Anwendungen.
Das Projekt eignet sich für Studierende der Informatik in den Diplom- und Bachelorstudiengängen. Studierende anderer Studiengänge müssen die Anrechnung mit dem jeweiligen Prüfungsausschuss klären.
Interessierte Zuhörer sind auch herzlich willkommen.
Zunächst werden die Grundlagen theoretisch vermittelt und mit kleinen Beispielen geübt. Im zweiten Teil werden in kleinen Gruppen jeweils unterschiedliche Problemstellungen bearbeitet. Hierbei wird ein (kleiner) Projektplan erstellt und im Team eine Anwendung zur Problemlösung implementiert. Status und aufgetretene Probleme werden regelmäßig gemeinsam besprochen.
Für weitere Vorschläge sind wir offen. Wichtig ist vor allem die korrekte Parallelisierung (evtl. mit Alternativen) und Auswertung. Detaillierte Kenntnisse der Numerik sind nicht erforderlich.
Vorgeschlagene Themen:
Bei der Durchführung der Projektes sollten einige Inhalte bearbeitet werden und entsprechend in Präsentation und Ausarbeitung einfließen.
Autoren: Elena Bergmann, Tobias Wesseler
Conway's Game of Life wurde 1970 von John Horton Conway entworfen und stellt einen zweidimensionalen zellulären Automaten dar. Das Spielfeld besteht aus einzelnen Zellen, die quadratisch angeordnet sind und zwischen zwei Zuständen wechseln können. Lebendige Zellen sind aktiv und tote Zellen inaktiv. Die Regeln beschreiben, wann eine tote Zelle lebendig wird, wann eine lebendige Zelle stirbt und wann sie weiterlebt.
Nachdem im zweidimensionalen Spielfeld schon statische, oszillierende, sich bewegende, erzeugende und vernichtende Objekte gefunden wurden, bleibt im dreidimensionalen Bereich noch weiteres zu entdecken. Wir werden daher dreidimensionale Spielfelder verarbeiten und das ganze mit MPI parallelisieren.
Autoren: Oliver Heidmann, Tronje Krabbe
Die Idee, die unserem Projekt zugrunde liegt, ist relativ simpel zu formulieren: Wir wollen ein Sonnensystem simulieren. In diesem System sollten die enthalte- nen Objekte realistisch miteinander interagieren. Alle Objekte beinflussen sich durch die Gravitation und durch physischen Kontakt, also Kollisionen.
Ausarbeitung – Präsentation – Source – Video
Autoren: Armin Schaare, Theresa Eimer, Lennart Braun
In diesem Projekt wurden eigens implementierte, künstliche neuronale Netze trainiert, das asiatische Brettspiel Go spielen zu können. Da das Training enorm vieler Kalkula- tionen bedarf, haben wir uns für die Umsetzung auf einem Rechencluster mit entspre- chenden Parallelisierungsschemata auseinander gesetzt.
Autoren: Michael Straßberger, Philip Gawehn
Tischkicker ist ein beliebter Sport. Schnelligkeiten, Geschick, Konzentration und viele weitere Eigenschaften machen ihn oft unvorhersehbar und spannend. Haufig ist der Ball durch seine hohe Geschwindigkeit mit dem bloßen Auge nicht mehr zu erkennen. Unter anderem aus diesem Grund haben wir uns als Aufgabe gestellt den Ball mit Hilfe einer Kamera verfolgen (tracken) zu können.
Autoren: Frederik Wille, Alexander Timmermann
Die Problemstellung bestand im Wesentlichen aus der Erstellung, Im- plementation und anschließenden Parallelisierung eines Algorithmus, der Fluggäste auf Flüge bzw. dann auch auf Sitzplätze im gewählten Flug- zeug verteilt.
Autoren: Jun-Patrick Raabe, Kolya Feierabend
Dieses Projekt zielt darauf ab, die Entwicklung der Bevölkerungsgrößen in einer fiktiven Welt mithilfe einer Simulation darzustellen. Die Bevölkerungsgruppen Mensch, Vampirjäger und Blade kämpfen gegen die Vampire ums Überleben. Durch die Möglichkeit, verschiedene Parameter, wie zum Beispiel die einzelnen Bevölkerungsgrößen, zu Simulationsbeginn anzupassen, können viele vollkommen unabhängige Resultate erzielt werden.
Autoren: Frank Röder, Julius Plehn
Da es sich in der Realität als sehr unpraktisch erweist, wenn man Lautsprecher in einem großen Raum mehrmals umplatzieren muss, durch wiederholtes ausprobieren, hinhören und erneutes umstellen nicht gerade schnell zu einem guten Ergebnis kommt, haben wir uns als Ziel gesetzt ein Modell zur Simulation von Schall in einem 3-dimensionalen Raum zu entwicklen.