
Graph Processing with Neo4j

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2016-12-09

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

julian.kunkel@googlemail.com

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Outline

1 Overview

2 Cypher Query Language (CQL)

3 Interfaces

4 Architecture

5 Summary

Julian M. Kunkel Lecture BigData Analytics, 2016 2 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j [31, 32]

Graph database written in Java

Supports ACID transaction semantics

One server scales to billions of nodes/relationships

Performance: Millions of node traversals/s

High availability (and performance) through clustering

Declarative query language Cypher (instead of SQL)

Note: Very loose connection to Hadoop ecosystem

Prepare data in, e.g., HBASE for batch import in Neo4j
Suboptimal import of Millions of nodes can take days

Schema-optional: You can use a schema

To gain performance
To improve modeling, e.g., via constraints

Many interfaces to the graph database

Julian M. Kunkel Lecture BigData Analytics, 2016 3 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Graph Data Model (Slight Changes for Neo4j)

Nodes: Entity

Edges: Relationship between two nodes

They have a direction

Property: (key, value)

Attributes describe relationships/nodes
Key is string, the value has a type

Label: Organize nodes into groups

Definitions for queries

Path: One or more nodes with
connecting relationships

Traversal: Navigates through a graph to
find paths

Source: What’s a Graph Database [31]

Julian M. Kunkel Lecture BigData Analytics, 2016 4 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Example Graph Use-Cases

Movie and actors data [31]

Movies: label, title, released date, tagline

People: label, name, born (date, optional)

Relationships

ACTED_IN from actor to movie, roles (list of played chars)
DIRECTED from director to movie

Source: Online Course: Introduction to Graph Databases and Neo4j [31]

Julian M. Kunkel Lecture BigData Analytics, 2016 5 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Converting RDBMS to Graphs

Consider three tables A,B,C

Relations between rows
(foreign keys) become edges

A1

A2

A3

B1

B2

B3

B4

B5

B6

B7

C1

C2

C3

Source: RDBMS. The Neo4j Manual
v2.2.5 [33]

A1

B1B2

A2

B4B6

A3

B3B5 B7

C1 C2C3

Source: Graph Database as RDBMS. The Neo4j Manual v2.2.5 [33]

Julian M. Kunkel Lecture BigData Analytics, 2016 6 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Converting Key-Value Store Models to Graphs

K1

K2

K3

V1

K2

V2

K1

K3

V3

K1

Source: Key-Value Store. The Neo4j Manual v2.2.5 [33]

V1

V2

V3
K1

K2

K3

Source: Graph Database as Key-Value Store. The Neo4j Manual [33]

Julian M. Kunkel Lecture BigData Analytics, 2016 7 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Converting the Document Store Model to Graphs

D1

S1

D2

S2S3

V1D2/S2 V2V3V4D1/S1

Source: Document Store. The Neo4j Manual v2.2.5 [33]

D=Document, S=Subdocument, V=Value, X/Y=reference to a subdocument in another document

D1

S1D2 S2S3

V1

V2

V3

V4

Source: Graph Database as Document Store. The Neo4j Manual v2.2.5 [33]

Julian M. Kunkel Lecture BigData Analytics, 2016 8 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j Case Success Studies [31]

For the logistics company Accenture

Use case: Dynamic parcel routing (5 million parcels/day)

With Neo4j: Routing of packets online, i.e., where to load a parcel

For the communication company SFR

Use case: Prioritize hardware
replacement to minimize downtime

Run automated “what if” analysis to
ensure resilience

With Neo4j: Loading data from > 30
systems works; easier analysis model Source: [36]

Julian M. Kunkel Lecture BigData Analytics, 2016 9 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

1 Overview

2 Cypher Query Language (CQL)

3 Interfaces

4 Architecture

5 Summary

Julian M. Kunkel Lecture BigData Analytics, 2016 10 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language Basics [31]

Declarative query language for formulating graph queries

Allows query and/or update of the graph

Each part of a query must be read-only or write-only
A query consists of multiple clauses

Transactions can span multiple queries

Supports: variables, expressions1, operators, comments

Supports collections (list, dictionary)

Provides functions for aggregation, collections, strings, math

1Handling missing values with NULL is possible, see
http://neo4j.com/docs/stable/cypher-working-with-null.html

Julian M. Kunkel Lecture BigData Analytics, 2016 11 / 37

http://neo4j.com/docs/stable/cypher-working-with-null.html

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language [33]

Syntax: specifying graph structures via patterns

Node

Anonymous node: ()
Named node: (x), the variable x is used to refer to it
Node with a specific label (class): (x : label)

Relationship

Named relationship: −[r]− >

Typed relationship: −[r : t]− >

Two nodes with a relationship: (a)− [r]− > (b)

Properties can be specified in {}, i.e., (x {name:"Hans"})

A pattern combines several nodes/relations

Julian M. Kunkel Lecture BigData Analytics, 2016 12 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language Read Clauses [33]

LOAD CSV: read data from a CSV file, can be used for importing

MATCH: search for something (returns a relational table)

DISTINCT keyword: Avoid replicates (e.g., returning a node twice)
OPTIONAL MATCH: optional relationship like SQL outer join

WHERE: Filtering

Supports regex matching of strings
Pattern predicates restrict the graph’s shape

Aggregation functions

Automatic grouping on all non-aggregated columns
sum, avg, percentileDisc, count

e.g., count(*), count(DISTINCT X)

collect(x): creates a list of all values

Julian M. Kunkel Lecture BigData Analytics, 2016 13 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language Write Clauses [33]

CREATE: an element or relation

MERGE: Create or lookup (CREATE + MATCH)

SET: Modify/Add data/labels

REMOVE: remove labels and properties

DELETE: remove graph elements

Julian M. Kunkel Lecture BigData Analytics, 2016 14 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language: Interactive Session

1 # Create a star graph
2 $ CREATE (c) FOREACH (x IN range(1,6)| CREATE (l),(c)-[:X]->(l)) RETURN id(c);
3 id
4 0
5 Updated the graph - created 7 nodes and 6 relationships
6

7 # Count the number of nodes
8 $ MATCH (n) RETURN count(n); # since we have not defined any restriction, all nodes
9 count(n)

10 7
11

12 # Count relationships based on their type
13 $ MATCH ()-[r]->() RETURN type(r), count(*);
14 type(r) count(*)
15 X 6
16

17 # Set the center node’s name property to CENTER
18 $ MATCH (n) WHERE id(n) = 184 SET n.name = "CENTER";
19

20 # Clean the database
21 $ MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n, r;

Julian M. Kunkel Lecture BigData Analytics, 2016 15 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language General Clauses [33]

FOREACH(< col >|< op >): iterates through a collection, apply op

RETURN: return the subgraph/table

Usually you can convert those into a response table

AS x: rename column to x

ORDER BY x (ASC|DESC): sorting

SKIP, LIMIT X: paginate

UNION: compose statements

WITH: a barrier for a pipeline of multiple statements

Example: retrieve the top entries by a criteria and join it with other data
Allows also to combine read-only and write-only parts
Aggregated results must pass through a WITH clause

UNWIND: expand a collection into a sequence of rows

USING: instruction to use/avoid indexes

Julian M. Kunkel Lecture BigData Analytics, 2016 16 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language [33]: Selection of Functions

id(): the node id

timestamp(): a timestamp

label(): the node label

upper(), lower(): change case

range(l,u): return a collection with numbers from l to u

length(x): size of a collection

keys(x): keys of a dictionary

coalesce(x, y): use property x if available, else y

nodes(path), rels(path), length(path)

Julian M. Kunkel Lecture BigData Analytics, 2016 17 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language: Examples [33]

1 # Return a collection
2 $ RETURN [1, 2, 3]
3

4 # Return a string with a row name of X
5 $ RETURN "BigData" as X
6

7 # Return a dictionary
8 $ RETURN {key1 : 2, key2 : "test"}
9

10 # Return a list of x^3 where x is an even number
11 $ RETURN [x IN range(1,10) WHERE x % 2 = 0 | x^3] AS result
12

13 # populate a table
14 $ CREATE (matrix1:Movie { title : ’The Matrix’, year : ’1999-03-31’ })
15 $ CREATE (keanu:Actor { name:’Keanu Reeves’ })
16 $ CREATE (keanu)-[:ACTS_IN { role : ’Neo’ }]->(matrix1)
17

18 # Create actor keanu if he does not exist
19 $ MERGE (keanu:Actor { name:’Keanu Reeves’ })
20

21 # Eliminate duplicates from a collection
22 $ WITH [1,1,2,2] AS coll UNWIND coll AS x WITH DISTINCT x RETURN collect(x) AS SET
23 # [1,2]

Julian M. Kunkel Lecture BigData Analytics, 2016 18 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language: Examples [33]

1 # Read a table from a (large) CSV
2 USING PERIODIC COMMIT
3 LOAD CSV WITH HEADERS FROM ’http://neo4j.com/docs/2.2.5/csv/artists-with-headers.csv’ AS

↪→ line
4 CREATE (:Artist { name: line.Name, year: toInt(line.Year)})
5

6 MATCH (a:Movie { title: ’Wall Street’ })
7 OPTIONAL MATCH (a)-->(x)
8 RETURN x
9

10 # return a movie and all properties
11 MATCH (movie:Movie { title: ’The Matrix’ })
12 RETURN movie;
13

14 # return certain attributes
15 MATCH (movie:Movie { title: ’The Matrix’ })
16 RETURN movie.title, movie.year;
17

18 # show all actors sorted by name
19 MATCH (actor:Actor)
20 RETURN actor ORDER BY actor.name;
21

22 # all actors whose name end with s
23 MATCH (actor:Actor)
24 WHERE actor.name =~ ".*s$"
25 RETURN actor.name;
Julian M. Kunkel Lecture BigData Analytics, 2016 19 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language: Examples [33]

1 # List all nodes together with their relationsships
2 MATCH (n)-[r]->(m) RETURN n AS from , r AS ‘->‘, m AS to;
3

4 # Return number of movies for actors acting in "The Matrix"
5 MATCH (:Movie { title: "The Matrix" })<-[:ACTS_IN]-(actor)-[:ACTS_IN]->(movie)
6 RETURN movie.title, collect(actor.name), count(*) AS count
7 ORDER BY count DESC ;
8

9 # Filtering
10 MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
11 WHERE p.name =~ "K.+" OR m.released > 2000 OR "Neo" IN r.roles
12 RETURN p,r,m
13

14 # Filtering based on graph structure
15 # Here: Search for people that are actors in any movie but never directed any movie
16 MATCH (p:Person)-[:ACTED_IN]->(m)
17 WHERE NOT (p)-[:DIRECTED]->()
18 RETURN p,m
19

20 # Identify how often actors and directors worked together
21 MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)<-[:DIRECTED]-(director:Person)
22 RETURN actor,director,count(*) AS collaborations

Julian M. Kunkel Lecture BigData Analytics, 2016 20 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Cypher Query Language: Examples [33]
1 # Use UNION to combine results
2 MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
3 RETURN p,type(r) AS rel,m
4 UNION
5 MATCH (p:Person)-[r:DIRECTED]->(m:Movie)
6 RETURN p,type(r) AS rel,m
7

8 # Return five actors of each movie
9 MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)

10 RETURN m.title AS movie, collect(a.name)[0..5] AS five_of_cast
11

12 # Use list predicates to restrict set further
13 MATCH path =(:Person)-->(:Movie)<--(:Person)
14 WHERE ALL (r IN rels(path) WHERE type(r)= ’ACTED_IN’) AND ANY (n IN nodes(path) WHERE

↪→ n.name = ’Clint Eastwood’)
15 RETURN path
16

17 MATCH (n {name: ’John’})-[:FRIEND]-(friend)
18 WITH n, count(friend) as friendsCount
19 WHERE friendsCount > 3
20 SET n.friendCount = friendsCount
21 RETURN n, friendsCount
22

23 # Update all nodes of all possible paths
24 MATCH p =(begin)-[*]->(end)
25 WHERE begin.name=’A’ AND end.name=’D’
26 FOREACH (n IN nodes(p)| SET n.marked = TRUE)
Julian M. Kunkel Lecture BigData Analytics, 2016 21 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Schemas [33]

Neo4j offers a few schema options to influence graph setup

Simple constraints can be created using CREATE

1 CREATE CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE
2 DROP CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE

Indexes for lookup

1 CREATE INDEX ON :Person(name)
2 DROP INDEX ON :Person(name)

Julian M. Kunkel Lecture BigData Analytics, 2016 22 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

1 Overview

2 Cypher Query Language (CQL)

3 Interfaces

4 Architecture

5 Summary

Julian M. Kunkel Lecture BigData Analytics, 2016 23 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Overview of the Interfaces

Neo4j shell [38]

Create, import, export, execute Cypher
Present results as ASCII tables

Web interface

Provides a shell for Cypher
Visualizes query results
Allows (performance) monitoring of Neo4j
Ships with Examples/Tutorials!
HTTPS support

Java API

Core Java API offers graph algorithms & is faster than CQL
JCypher: DSL for higher abstraction level
Automatic object-graph mapping via annotations

Relational mapping with JDBC driver

REST, Python, ...

Julian M. Kunkel Lecture BigData Analytics, 2016 24 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Web Interface: Example Queries

Julian M. Kunkel Lecture BigData Analytics, 2016 25 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Web Interface: Example Queries

Julian M. Kunkel Lecture BigData Analytics, 2016 26 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Clauses for Debugging of Queries

EXPLAIN: shows the execution plan
PROFILE: runs the statement and shows where time is spend

EXPLAIN ...

Cypher version: CYPHER 2.3,
planner: COST. 292 total db hits in 78 ms.

PROFILE ...

MATCH (tom:Person name:"Tom Hanks")-[:ACTED_IN]->(m) RETURN m.name

Julian M. Kunkel Lecture BigData Analytics, 2016 27 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Java API: Example for our Student Table. See [37]

1 private static enum MyRelationTypes implements RelationshipType
2 { ATTENDS } // we can use enums for relation types
3

4 public static void main(String [] args){
5 GraphDatabaseService graphDb; // start database server
6 graphDb = new GraphDatabaseFactory().newEmbeddedDatabaseBuilder(File("x"));
7 registerShutdownHook(graphDb);
8

9 Node student; Node lecture; Relationship attends;
10 // encapsulate operations into a transaction
11 try (Transaction tx = graphDb.beginTx()){
12 student = graphDb.createNode();
13 student.setProperty("Name", "Julian");
14 lecture = graphDb.createNode();
15 lecture.setProperty("Lecture", "Big Data Analytics");
16 attends = student.createRelationshipTo(lecture, RelTypes.ATTENDS);
17 attends.setProperty("Semester", "1516");
18 tx.success();
19 }
20 graphDb.shutdown(); // shutdown application server
21 }

Julian M. Kunkel Lecture BigData Analytics, 2016 28 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

1 Overview

2 Cypher Query Language (CQL)

3 Interfaces

4 Architecture

5 Summary

Julian M. Kunkel Lecture BigData Analytics, 2016 29 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Evaluation of Cypher expressions [33]
An execution planner transforms a query into a plan

Rule-based planner uses indexes
Cost-based planner uses statistical information

Use indices if available
Order (DFS or BFS)
Uniqueness: avoid duplicates
Evaluator: decide what to return and when to stop
Recursive matching with backtracking

Source: The Neo4j Manual 2.2.5 (36.1. Main Concepts) [33]

Julian M. Kunkel Lecture BigData Analytics, 2016 30 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j Architecture: On-Disk Format [32]

Physically, multiple “store files” are used
Data is stored as double linked lists of records
Storage for nodes, relationships and properties

Long values are persisted in separate array and string stores

Source: K. Geusebroek. I MapReduced a Neo store [34] (modified)

Julian M. Kunkel Lecture BigData Analytics, 2016 31 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j Consistency [32]

ACID transaction support

Isolation of concurrent operations until transaction is completed
All write operations are sorted (before stored/communicated) to ensure
predictable update order
Write changes in sorted order to the transaction log
Apply the changes to the store files
Implemented via locking of Nodes/Relationships during transaction

Upon completion of transaction changes are persisted

Recovery: re-applies the transaction log

Julian M. Kunkel Lecture BigData Analytics, 2016 32 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j High-Availability [32, 33, 35]

Neo4j clustering replicates the database across servers

One master multiple slaves provides

Data redundancy
Service fault tolerance

A master election protocol is used

A quorum (majority) of servers must be up to serve writes

Transactions are first commited to master

Creating an incrementing transaction id (txid)
Eventually applied to slaves sending streams
Update interval defines delay

Applying transactions to a slave

The master coordinates locking
After applying transaction on master
The slave uses the same txid

Julian M. Kunkel Lecture BigData Analytics, 2016 33 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j High-Availability Architecture [33]

Source: The Neo4j Manual 2.2.5 (25.1. Architecture) [33]

Julian M. Kunkel Lecture BigData Analytics, 2016 34 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Neo4j Performance Aspects [32]

Remember: Data is completely replicated across servers

Clustered Neo4j allows horizontal scaling of reads

Writes are always coordinated by the master

Transactions can be speed up with batch inserts and periodic commits
The file format is optimzed for graph-local operations
Indexing and caching speed up access

Fine lock granularity (on node/relationship level)

Consistency: Nodes/Relationships have an unique ID

Blocks for IDs are pre-allocated from the master
Creation of nodes/relationships does not require a lock

Julian M. Kunkel Lecture BigData Analytics, 2016 35 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Performance Aspects [32]

Indexing

Index: Labels and property values

Eventually available, populated in background

Handled via Apache Lucene search library

Automatic indexing possible

Caches

Filesystem cache: caches blocks of store files

LFU eviction policy
Use mmap() to map data blocks into memory

Node/Relationship cache

Julian M. Kunkel Lecture BigData Analytics, 2016 36 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Summary

Neo4j is a powerful graph database

ACID transaction semantics

Other data models can be converted to graphs

Many interfaces for accessing graph

CypherQL is the SQL for the Neo4j graph DB

Interactive web interface processes CQL

Simple file format with linked lists

Clustering increases read scalability

Julian M. Kunkel Lecture BigData Analytics, 2016 37 / 37

Overview Cypher Query Language (CQL) Interfaces Architecture Summary

Bibliography

10 Wikipedia

31 Interactive Online Course
http://neo4j.com/graphacademy/online-training/

32 http://de.slideshare.net/thobe/an-overview-of-neo4j-internals

33 The Neo4j Manual v2.2.5. http://neo4j.com/docs/stable/

34 I MapReduced a Neo store. Kris Geusebroek.
http://2013.berlinbuzzwords.de/sites/2013.berlinbuzzwords.de/files/
slides/CreatingLargeNeo4jDatabasesWithHaddoop.pdf

35 D. Montag. Understanding Neo4j Scalability.

36 http://neo4j.com/use-cases/

37 http://neo4j.com/docs/stable/tutorials-java-embedded-hello-world.html

38 http://neo4j.com/docs/stable/tools.html

Julian M. Kunkel Lecture BigData Analytics, 2016 38 / 37

http://neo4j.com/graphacademy/online-training/
http://de.slideshare.net/thobe/an-overview-of-neo4j-internals
http://neo4j.com/docs/stable/
http://2013.berlinbuzzwords.de/sites/2013.berlinbuzzwords.de/files/slides/CreatingLargeNeo4jDatabasesWithHaddoop.pdf
http://2013.berlinbuzzwords.de/sites/2013.berlinbuzzwords.de/files/slides/CreatingLargeNeo4jDatabasesWithHaddoop.pdf
http://neo4j.com/use-cases/
http://neo4j.com/docs/stable/tutorials-java-embedded-hello-world.html
http://neo4j.com/docs/stable/tools.html

	Overview
	Introduction to Neo4j
	Data Model
	Use Cases

	Cypher Query Language (CQL)
	Overview
	Cypher Examples
	Schemas

	Interfaces
	Overview
	Web Interface
	Debugging
	API

	Architecture
	Evaluation of CQL
	On-Disk Format
	Consistency
	High-Availability
	Performance Aspects

	Summary

