Performance Aspects

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2017-01-13

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

Outline		

2 Hardware

3 Assessing Performance

4 Benchmarks

Overview ●OO		
Goals		

- Goal (user perspective): minimal time to solution
 - Solution = workflow from data ingestion, programming to analysis results
 - Programmer/User productivity is important
- Goal (system perspective): cheap total cost of ownership
 - Simple deployment and easy management
 - Cheap hardware
 - Good utilization of (hardware) resources means less hardware
- \Rightarrow In this lecture, we focus on the processing of a workflow

Processing Steps

- 1 Ingesting data into our big data environment
- **2 Processing** the workflow with (multiple) Hive/Pig/... queries
 - Most important factor for the productivity of data scientists
 - Low runtime is crucial for repeated analysis and interactive exploration
 - Multiple steps/different tools can be involved in a complex workflow.
 We consider only the execution of one job with any tool

3 Post-processing of output with (external) tools to produce insight

- Strategy: big data workflow data transfer local analysis
- Best: return a final product from the big data workflow

Performance Factors Influencing Processing Time

Startup phase

- Distribution of necessary files/scripts
- Allocating resources/containers
- Starting the scripts and loading dependencies
- Usually fixed costs (in the order of seconds)

Job execution: computing the product

- Costs for computation and necessary communication & I/O depend on
 - Job complexity
 - Software architecture of the big data solution
 - Hardware performance and cluster architecture
- Cleanup phase
 - Teardown containers, free resources
 - Usually fixed costs (in the order of seconds)

Hardware		

2 Hardware

- 3 Assessing Performance
- 4 Benchmarks

 Overview
 Hardware
 Assessing Performance
 Benchmarks
 Summary

 000
 000
 00
 00000
 00000

- Usually commodity components
- Cheap (on-board) interconnect, node-local storage
- Communication (bisection) bandwidth between different racks is low

Architecture of a typical BigData cluster

 Overview
 Hardware
 Assessing Performance
 Benchmarks
 Summar

 000
 0●00
 00
 00000
 00000
 000000

HPC Cluster Characteristics

- High-end components
- Extra fast interconnect, global/shared storage with dedicated servers
- Switches provide high (full) bisection bandwidth

	Hardware ○O●○		
Hardwa	re Performa	ance	

Computation

- CPU performance (frequency · cores · sockets)
 - e.g., 2.5 GHz · 12 cores · 2 sockets = 60 Gcycles/s
 - The number of cycles per operation depend on the instruction stream
- Memory (throughput · channels); e.g., 25.6 GB/s per DDR4 DIMM ·3

Communication via the network

- Throughput, e.g., 125 MiB/s with Gigabit Ethernet
- Latency, e.g., 0.1 ms with Gigabit Ethernet

Input/output devices

- HDD mechanical parts (head, rotation) lead to expensive seek
- \Rightarrow Access data consecutively and not randomly
- \Rightarrow Performance depends on the I/O granularity
 - e.g., 150 MiB/s with 10 MiB blocks

Hardware-Aware Strategies for Software Solutions

- Java is suboptimal: 1.2x 2x of cycles needed than in C¹
- Utilize different hardware components concurrently
 - Pipeline computation, I/O and communication
 - At best hide two of them ⇒ 3x speedup
 - Avoid barriers (waiting for the slowest component)
- Balance and distribute workload among all available servers
 - Linear scalability is vital (and not the programming language)
 - Add 10x servers, achieve 10x performance
- Avoid I/O, if possible (keep data in memory)
- Avoid communication, if possible
- Allow monitoring of components to see their utilization

Examples for Pig/Hive

- Foreach, filter are node-local operations
- Sort, group, join need communication

¹This does not matter much compared to the other factors.

	Assessing Performance	

2 Hardware

3 Assessing Performance

4 Benchmarks

Basic Approach

Question

Is the observed performance acceptable?

Basic approach

Start with a simple model

- 1 Measure time for the execution of your workload
- 2 Quantify the workload with some metrics
 - e.g., amount of tuples or data processed, computational operations needed
 - e.g., you may use the statistis output for each Hadoop job
- **3** Compute w_t , the workload you process per time
- 4 Compare w_t with your expectations of the system

Refine the model as needed, e.g., include details about intermediate steps

Errors Increase Processing Time [11]

- Error probability E < 1 increases the processing time
- A rerun of a job may fail again

Processing time with errors: $P' = (E + E^2 + ...) \cdot P' = P/(1 - E)$

Assessing Performance

- With 50% chance of errors, twice the processing time
- With 90% chance, 10x

	Benchmarks	

2 Hardware

3 Assessing Performance

4 Benchmarks

Daytona GraySort

- Sort at least 100 TB data in files into an output file
 - Generates 500 TB of disk I/O and 200 TB network I/O [12]
 - Drawback: Benchmark is not very compute intense
- Data record: 10 byte key, 90 byte data
- Performance Metric: sort rate (TBs/minute)

	Hadoop MR	Spark	Spark	
	Record	Record	1 PB	
Data Size	102.5 TB	100 TB	1000 TB	
Elapsed Time	72 mins	23 mins	234 mins	
# Nodes	2100	206	190	
# Cores	50400 physical	6592 virtualized	6080 virtualized	
Cluster disk	3150 GB/s	C10 CD /-	570 CD /-	
throughput	(est.)	018 GB/S	DTU GB/S	
Sort Benchmark	V		Ne	
Daytona Rules	res	res	NO	
Network	dedicated data	virtualized (EC2)	virtualized (EC2)	
Network	center, 10Gbps	10Gbps network	10Gbps network	
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min	
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min	
-	6	[10]		

			Benchmarks OOOOO	
Assessing				

Hadoop

- 102.5 TB in 4,328 seconds [13]
- Hardware: 2100 nodes, dual 2.3Ghz 6cores, 64 GB memory, 12 HDDs
- Sort rate: 23.6 GB/s = 11 MB/s per Node ⇒ 1 MB/s per HDD
- Clearly this is suboptimal!

Apache Spark (on disk)

- 100 TB in 1,406 seconds [13]
- Hardware: 207 Amazon EC2, 2.5Ghz 32vCores, 244GB memory, 8 SSDs
- Sort rate: 71 GB/s = 344 MB/s per node
- Performance assessment
 - Network: 200 TB ⇒ 687 MiB/s per node Optimal: 1.15 GB/s per Node, but we cannot hide (all) communication
 - I/O: 500 TB \Rightarrow 1.7 GB/s per node = 212 MB/s per SSD
 - Compute: 17 M records/s per node = 0.5 M/s per core = 4700 cycles/record

 Overview
 Hardware
 Assessing Performance
 Benchmarks
 Summary

 000
 0000
 00
 00000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

Executing the Optimal Algorithm on Given Hardware

An Utopic Algorihm

Assume 200 nodes and random key distribution

- 1 Read input file once: 100 TB
- 2 Pipeline reading and start immediately to scatter data (key): 100 TB
- Receiving node stores data in likely memory region: 500 GB/node Assume this can be pipelined with the receive
- 4 Output data to local files: 100 TB

Estimating optimal runtime

Per node: 500 GByte of data; I/O: keep 1.7 GB/s per node

- 1 Read: 294s
- **2** Scatter data: $434s \Rightarrow$ reading can be hidden
- 3 One read/write in memory (2 sockets, 3 channels): 6s
- 4 Write local file region: 294s
- Total runtime: $434 + 294 = 728 \Rightarrow 8.2$ T/min

In-Memory Computing

Aggregating 10 M integers with 1 thread

- Spark [14]: 160 MB/s, 500 cycles per operation²
- Python (raw): 0.44s = 727 MB/s, 123 cycles per operation
- Numpy: 0.014s = 22.8 GB/s, 4 cycles per operation

Invoking external programming languages is even more expensive!

²But it can use multiple threads easily.

Comparing Pig & Hive

Benchmark by IBM [16], similar to Apache Benchmark

- Tests several operations, data set increases 10x in size
 - Set 1: 772 KB, 2: 6.4 MB, 3: 63 MB, 4: 628 MB, 5: 6.2 GB, 6: 62 GB
- 5 data/compute nodes, configured to run 8 reduce and 11 map tasks

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Arithmetic	32	36	49	83	423	3900
Filter 10%	32	34	44	66	295	2640
Filter 90%	33	32	37	53	197	1657
Group	49	53	69	105	497	4394
Join	49	50	78	150	1045	10258

Pig time. Source: B. Jakobus (modified), "Table 1: Averaged performance" [16]

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Arithmetic	32.	37.	72	300	2633	27821
Filter 10%	32	53.	59	209	1672	18222
Filter 90%	31	32.	36	69	331	3320
Group	48	47.	46	53	141	1233
Join	48	56.	10	517	4388	-
Distinct	48	53.	72	109	-	-

Hive time. Source: B. Jakobus (modified), "Table 2: Averaged performance" [16]

		Summary
Summary		

- Goal (user-perspective): optimize the time-to-solution
- Runtime of queries/scripts is the main contributor
- Compute in big data clusters is usually overdimensioned
- Understanding a few hw throughputs helps assessing performance
- Linear scalability of the architecture is the crucial performance factor
- Basic performance analysis
 - Estimate the workload
 - 2 Compute the workload throughput per node
 - 3 Compare with hardware capabilities
- Error model predicts runtime if jobs must be restarted
- GreySort with Spark utilizes I/O, communication well
- Computation even with Spark is much slower than Python
- Different big data solutions exhibit different performance behaviors

			Summary
Bibliogra	phy		

- 10 Wikipedia
- 11 Book: N. Marz, J. Warren. Big Data Principles and best practices of scalable real-time data systems.
- 12 https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
- 13 http://sortbenchmark.org/
- 14 https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sqlpython-dataframes-and-more.html
- 15 https://github.com/hortonworks/hive-testbench
- 16 http://www.ibm.com/developerworks/library/ba-pigvhive/pighivebenchmarking.pdf