Machine Learning
 Lecture BigData Analytics

Julian M. Kunkel
julian.kunkel@googlemail.com
University of Hamburg / German Climate Computing Center (DKRZ)

2016-11-25

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

Outline

1 Introduction

2 Methodology

3 Classification

4 Regression
5 Clustering

6 Association Rule Mining

7 Meta-Learning

8 Summary

Data Mining (Knowledge Discovery) [1,35]

Definition

■ Data mining: process of discovering patterns in large data sets
■ (Semi-)Automatic analysis of large data to identify interesting patterns
■ Using artificial intelligence, machine learning, statistics and databases

Tasks / Problems for data mining

■ Classification: predict the category of samples
■ Regression: find a function to model numeric data with the least error
■ Anomaly detection: identify unusual data (relevant or error)
■ Association rule learning: identify relationships between variables
■ Clustering: discover and classify similar data into structures and groups
■ Summarization: find a compact representation of the data

Terminology for Input Data [1, 40]

■ Sample: instances (subset) of the unit of observation
■ Feature: measurable property of a phenomenon (explanatory variable)

- The set of features is usually written as vector (f1, ..., fn)

■ Label/response: outcome/property of interest for analysis/prediction
■ Dependent variable

- Discrete in classification, continuous in regression

Forms of features/labels

- Numeric: a (potentially discrete) number characterizes the property
- e.g., age of people

■ Categorical/nominal: a set of classes

- e.g., eye color

■ Dichotomous (binary) variable: contains only two classes (Male: Yes/No)
■ Ordinal: an ordered set of classes
■ e.g., babies, teens, adults, elderly

Example Data

Imagine we have data about alumni from the university

Field of study	Gender	Age	Succ. exams	Fail. exams	Avg. grade*	Graduate	Dur. studies
CS	M	24	21	1	2.0	Yes	10
CS	M	22	5	2	1.7	Enrolled	2
Physics	F	23	20	1	1.3	Enrolled	6
Physics	M	25	8	10	3.0	No	10

- Categorical: field of study, gender, graduate, (favourite colour)

■ Numeric: age, successful/failed exams, duration of studies
■ Numeric: average grade; Ordinal: very good, good, average, failed
Our goal defines the machine learning problem
■ Predict if a student will graduate \Rightarrow classification
■ Prescriptive analysis: we may want to support these students better
■ Predict the duration (in semesters) for the study \Rightarrow regression
■ Clustering to see if there are interesting classes of students
■ We could label these, e.g., the prodigies, the lazy, ...
■ Probably not too helpful for the listed features

Terminology for Learning [40]

■ Online learning: update the model constantly while it is applied
■ Offline (batch) learning: learn from data (training phase), then apply
■ Supervised learning: feature and label are provided in the training
■ Unsupervised learning: no labels provided, relevant structures must be identified by the algorithms, i.e., descriptive task of pattern discovery
■ Reinforcement learning: algorithm tries to perform a goal while interacting with the environment

■ Humans use reinforcement, (semi)-supervised and unsupervised learning

Overview of Machine Learning Algorithms (Excerpt)

Classification

■ k-Nearest neighbor

- Naive bayes

■ Decision trees
■ Classification rule learners

Regression/Numeric prediction

- Linear regression
- Regression trees

■ Model trees

Regression \& classification

Pattern detection

- Association rules
- k-means clustering

■ density-based clustering
■ model-based clustering

Meta-learning algorithms
■ Bagging

- Boosting

■ Random forests
■ Neuronal networks

- Support vector machines

Machine Learning in Practice [1]

Process / Phases

1 Data collection: combining data into a single source
2 Data exploration and preparation: inspection and data cleanup
3 Model training: depending on machine learning task choose algorithm
4 Model evaluaton: check accuracy of the model
5 Model improvement: if necessary try to improve accuracy by utilizing advanced methods or providing additional input

Cross Industry Standard Process for Data Mining [39]

CRISP-DM is a commonly used methodology from data mining experts

Phases

- Business understanding: business objectives, requirements, constraints; converting the problem to a data mining problem
- Data understanding: collecting initial data, exploration, assessing data quality, identify interesting subsets
- Data preparation: creation of derived data from the raw data (data munging)

■ Modeling: modeling techniques are selected and applied to create models, assess model quality/validation

■ Evaluation (wrt business): check business requirements, review construction of the model(s), decide use

■ Deployment: applying the model for knowledge extraction;

Source: Kenneth Jensen [38] creating a report, implementing repeatable data mining process

1 Introduction

2 Methodology

3 Classification

4 Regression

5 Clustering

6 Association Rule Mining

7 Meta-Learning

8 Summary

Normalization of Data [1, p. 72]

■ Several algorithms require that numeric variables are normalized
■ The numbers of the feature vector are treaded identically
■ Example: in the features (age, income, is_male), income is \gg age
■ Treatment: scale features similar, e.g., all values between 0 and 1
Min-Max normalization

- $X_{\text {new }}=\frac{X-\min (X)}{\max (X)-\min (X)}$

Z-Score standardization

- $X_{\text {new }}=\frac{X-\operatorname{mean}(X)}{\operatorname{StdDev}(X)}$

■ Especially useful for normal distributed data

Dummy Coding [1]

■ Problem: distance is not defined for categorical data
■ Regression does not make sense for categorical data

- Dummy coding transforms N classes into $\mathrm{N}-1$ dummy (proxy) variables
- 0 indicates instance is of given class
- 1 indicates use other class

■ The last class is the reference class
■ Dummy coding works well for features
■ Independent prediction of several "feature" classes must be resolved, i.e., more than one class is predicted as 1

Example

■ Color: Red, blue, green
■ Dummy variables: color_red, color_blue, color_green

- Color green could be omitted and be the reference

Treating Missing Data [32, 33, 1, p.300]

■ Problem: a feature is not available for an example

Alternatives

■ Deletion: remove examples with missing (N/A) data

- Problem: we may have many features of which many examples miss one

■ Imputation: replace N/A with substitution values

- Hot-deck imputation: replace value with a random value from similiar entity
- Last observation carried forward: simply use last observed value
- Replace with median, mean (of similar entities)
- Interpolation (or Kriging)
- Apply a regression model
- Statistic regression: replace with mean + random variance

■ Replacing too many instances may complicate analysis/exploration

Strategy for Learning [40]

■ Goal: Learn properties of the population from a sample
■ Data quality is usually suboptimal
■ Erroneous samples (random noise, ambivalent data)
■ Overfitting: a model describes noise in the sample instead of population properties
■ Underfitting: a model ignores small but important patterns
■ Robust algorithms reduce the chance of fitting noise
■ How accurate is a specific model on the population?
■ Should we train a model on our data and check its accuracy on the same?
■ As the model is trained on the data, it should be able to be accurate

- A lookup table might reproduce the data perfectly but is not useful

■ Resubstitution error: training/testing with the same data shows how well the model can fit

■ A bad fit can be an indicator for ambivalent/erroneous data

- A bad fit can also show that the method is not appropriate for the data

■ Personally, I always do check model quality first on the resubstitution error

Holdout Method

- Split data into training (50\%), test (25\%) and validation (25\%) set

■ Training set: build/train model from this data sample
■ Validation set: check model quality and refine the models
■ Test set: check final model accuracy on this set (expected accuracy)
■ Once the best model is identified, train it on complete data set

Holdout method. The figure is based on [1, p.337].

Supplementary Strategies

Problems

■ Sometimes we have not sufficient training samples
■ Suboptimal selection of training samples may cause problems

- Classification: some classes may have only a few training samples
k-fold cross validation
■ Prevents cases in which we partition data suboptimally
■ See next slide

Leave-one-out cross validation
■ Builds model with all elements except one
■ Compute model accuracy on the last (test) element
■ Repeat the process for each element

k-fold cross validation

1 Split data into k sets

2 For all permutations: train from k -1 sets, validate with remaining set
3 Compute average error metrics

Example with the iris data set

```
library(cvTools)
set.seed(123) # initialize random seed generator
data(iris)
# create 10 folds
f = cvFolds(nrow(iris), K=10, R=1, type="random")
# retrieve all sets
for (set in 1:10){
    validation = iris[ f$subsets[f$which == set] ,] # 135 elements
    training = iris[ f$subsets[f$which != set], ] # 15 elements
    # TODO Now build your model with training data and validate it
    # TODO Build error metrics for this repeat
}
# Output aggregated error metrics for all repeats
# Some packages perform the k-cross validation for you
```


Creating only one training set

```
# create two classes, train and validation set
mask = sample(2, nrow(iris), repl=T, prob=c(0.9,0.1))
validation = iris[mask==1, ]
training = iris[mask==2, ]
```


Stratified sampling [11]

■ Stratification: dividing the population into homogeneous subgroups before sampling

■ e.g., for clinical trials: people (not) having a disease and smokers, 4 groups

- Draw the same number of random samples from each group

■ If we have the data already:
■ Split the observed samples into classes and distribute these instances across traing/test/validation set
■ Alternatively: Draw the same number of elements from each class
Example problem: class imbalance problem [1, p. 312]

- Consider we have test A for a disease

■ We know that 990 people are healthy and 10 people have the disease
■ Assume the test always reports "healthy"
■ Is this a good test? It is correct in 99\% of cases!
\Rightarrow A careful assessment of model performance is needed

Evaluating Model Performance

■ Idea: compare true value with predicted "value" on the training data
■ Algorithms return the predicted class/numeric value

- Classification returns the class (e.g., color, healthy: yes/no)
- Regression the numeric value
- Algorithms may return a probability of the prediction

■ Likelihood that the value was correct on the training/test set
■ Sometimes the choice is tight, i.e., 49\% class A vs. 51\% class B
■ We may skip such results and say we cannot determine the class!
■ There are different metrics to assess the quality of the model

- Metrics depend on the problem: classification vs. regression

Assessing Correctness of Classification Models

Confusion matrix

■ Visualizes the performance of the classification
■ Shows count in observation (row) and prediction class (column)

	Class A	Class B	Class C
Class A	AA	AB	AC
Class B	BA	BB	BC
Class C	CA	CB	CC

- Often one class is of interest (e.g., class A)

■ True positive (TP): observation is true, predicted as true (AA)
■ False positive (FP): observation is false, prediction is true (BA, CA)
■ True negative (TN): observation is false, predicted as false (BB, CC)
■ False negative (FN): observation is true, prediction is false (else)
■ There are useful metrics defined on these values
■ Accuracy, error rate, sensitivity, specifity, precision, recall
■ Kappa statistic: correctness vs. random correctness
■ F-measure (F-score): weights precision and recall equally

Evaluating Model Performance for Numerical Data

■ Residual: difference of observation ${ }^{1}$ and estimated (predicted) value
■ Residual (error): $e=o-e$
■ In our test/validation set we have n samples for which we compute residuals

- Mean absolute error: $M A E=\frac{1}{n} \sum_{i=1}^{n}\left|e_{i}\right|$

■ Mean square error: $M S E=\operatorname{sqrt}\left(\frac{1}{n} \sum_{i=1}^{n}\left(o_{i}-e_{i}\right)^{2}\right)$

- Mean absolute percentage error: MAPE $=\frac{100}{n} \sum_{i=1}^{n}\left|\frac{o_{i}-e_{i}}{o_{i}}\right|$

■ We may compute correlation of observation and estimation

[^0]
1 Introduction

2 Methodology

3 Classification

4 Regression

5 Clustering

6 Association Rule Mining

7 Meta-Learning

8 Summary

Classification: Supervised Learning

■ Goal: Identify/predict the class of previously unknown instances

Each class (flower type) is visualized in its own color

Generalized Linear Model (GLM) [34]

- LM expects numeric data and normal distribution of error values

■ GLM is a linear model that map the response via a link function
■ e.g., improve accuracy for binary result variable by computing a probability

Plot of logit(p)

Plot of logit ${ }^{-} 1(\alpha)=\operatorname{logistic}(\alpha)$

Example in R

```
d$female = (d$gender == "female") # convert into dichotomous var
d$grade = factor(d$grade) # convert variable into a categorical var
m = glm(formula = graduate ~ female + age + grade + exams_succ + exams_fail,
    \hookrightarrowamily=binominal(link="probit"), data=d)
```


k-Nearest Neighor (k-NN) [1]

■ Prediction: compute distance of new sample to k nearest samples
■ Majority of neighbors vote for new class
■ Strengths:
■ Simple and effective supervised learning algorithm

- No assumption about data distribution
- Fast training

■ Weaknesses:
■ Does not create a model thus no inference
■ Parameter k needs to be set
■ Slow classification
■ Normalization (min/max) required, nominal features and missing data

Example in R

```
library(kknn)
m = kknn(Species ~ Sepal.Width + Petal.Length + Petal.Width + Sepal.Length, train=training, test=validation, k=3)
# Create a confusion matrix
table(validation$Species, m$fit)
# setosa versicolor virginica
    setosa 
    versicolor 0 0
# virginica 
```


Supporting Topic: Distance Metrics

■ Consider two vectors $v=\left(v_{1}, \ldots, v_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$
■ Euclidean distance: $d(v, w)=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots+\left(v_{n}-w_{n}\right)^{2}}$
■ Manhattan distance: $d(v, w)=\left|\left(v_{1}-w_{1}\right)\right|+\ldots+\left|\left(v_{n}-w_{n}\right)\right|$

Red: Manhattan distance. Green: diagonal, euclidean distance. Blue, yellow: equivalent Manhattan distances [12]

Naive Bayes [1]

■ Idea: predict class based on probabilities of occurrence in the training
■ e.g., email containing medication, viagra, shop is likely to be Spam
■ Based on Bayesian methods
■ $P(A)$: Probability outcome A is observed $=$ count $A /$ count all observations
■ Assume independence: $P(A \cap B)=P(B \mid A) \cdot P(A)=P(A \mid B) \cdot P(B)$
■ $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) \cdot P(A)}{P(B)}$ (Probability of A under condition B)
■ Naive assumptions: independence and equal importance of features
■ Classification: $P\left(C_{L} \mid F_{1}, \ldots, F_{n}\right)=\frac{1}{z} p\left(C_{L}\right) \prod_{i=1}^{n} p\left(F_{i} \mid C_{L}\right)$

- Strengths:

■ Simple, fast and effective
■ Works well with noisy and missing data

- Small number of training samples required

■ Probability for a prediction can be obtained (confidence)
■ Weaknesses:
■ Assumes that all features are equally important
■ Suboptimal for datasets with many numeric features
■ Probabilities are less reliable than predicted classes

Example: Spam Filter [1]

■ Goal: Classify an email as Ham or Spam based on text
■ $w_{i}=1$, if a word occurs in message $i, 0$ otherwise
■ Summarize w_{i} based on the labels and create tables
Probability table calculated from the training set for each word

	Medication		
Frequency	Yes	No	Total
Spam	4	16	20
Ham	1	79	80
Total	5	95	100

	Shop		
Frequency	Yes	No	Total
Spam	3	17	20
Ham	20	60	80
Total	23	77	100

Classification of new e-mails
■ $P($ Spam \mid Medication, Shop $)=4 / 20 \cdot 3 / 20 \cdot 20 / 100=0.006$
■ $P($ Ham \mid Medication, Shop $)=1 / 80 \cdot 20 / 80 \cdot 80 / 100=0.0025$
$\Rightarrow P($ Spam $)=0.006 /(0.006+0.0025)=70.6 \%$

Data Pre-Processing [1]

- Problem: predict 0 if a feature is missing in a class level while training

■ e.g., in our Spam classifier a name is never seen in a spam email
■ Observation in practice leads to multiplication with zero
■ Solution: missing data is treated with the Laplace estimator:
Add 1 to the count of each class-feature to ensure it occurs
■ Other values work too, but ensure that probability for class sum to 1
■ Alternative: Ignore attribute from calculation

	Medication		
Likelihood	Yes	No	Total
Spam	$5 / 22$	$17 / 22$	22
Ham	$2 / 82$	$80 / 82$	82
Total	7	97	104

■ Predicting numeric features with Naive Bayes
$■$ Create interval classes (bins) for numeric data

- e.g., Class 1 are all instances between 0 and 10

■ Selection of cut points should be inspired by data distribution

- Quantiles are (trivial but) potential cut points

■ Alternative: use a probability density function

- Training: estimate parameters based on distribution of a class
- Prediction for x : multiply by PDF(x) (instead of probability of a class)

Decision Trees

■ Tree data structures, a node indicates an attribute and threshold
■ Follow left edge if value is below threshold otherwise right

- Leafs are decisions

■ Can separate data horizontally and vertically
■ Classification trees (for classes) and regression trees for continuous vars

- Various algorithms to construct a tree

■ CART: Pick the attribute to maximize information gain of the split
■ Knowledge (decision rules) can be extracted from the tree
■ Tree pruning: Recursively remove unlikely leafs (reduces overfitting)

(a) Tree for iris data

(b) Split of the values

Decision Trees with R

■ Rpart package supports regression (method="anova")
■ Classification (with two classes method="poisson" else "class")

- Control object defines requirements for splitting (e.g., observations per leaf, cost complexity (cp) factor)

```
library(rpart)
data(iris) # The iris data (from the slide before9
# Create a classification tree based on all inputs
m = rpart(Species ~ Sepal.Width + Petal.Length + Petal.Width + Sepal.Length, data=iris, method="class",
    control = rpart.control(minsplit=5, cp = 0.05)) # require a minimum number of 5 observations
summary(m) # print details of the tree
plot(m, compress=T, uniform=T, margin=0.7) # plot the tree
text(m, use. n=T, all=T) # add text to the tree, plot all nodes not only leafs
m = prune(m, cp=0.05) # prune the tree, won't change anything here
p = predict(m, iris[150,], type="class") # predict class of data in the data frame, here one instance virginica
p = predict(m, iris[150,], type="prob") # predict probabilities
# setosa versicolor virginica
# 150 0 0.02173913 0.9782609
# Confusion matrix, training and test data is identical to show ambivalence of the model
table(iris$Species, predict(m, iris, type="class"))
# setosa versicolor virginica
# setosa 50 0 0
# versicolor 0 49 1
# virginica 0 5 45
table(iris$Species == predict(m, iris, type="class")) / nrow(iris) # show fraction of predictions
# FALSE TRUE
# 0.04 0.96
```


Machine Learning with Python

■ Recommended package: scikit-learn ${ }^{2}$

- Provides classification, regression, clustering, dimensionality reduction
- Supports via model selection and preprocessing

Example: Decision tree

```
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
m = tree.DecisionTreeClassifier()
m = m.fit(iris.data, iris.target)
# export the tree for graphviz
with open("iris.dot", 'w') as f:
    tree.export_graphviz(m, out_file=f)
# To plot run: dot -Tpdf iris.dot
```


Sklearn decision tree

[^1]
1 Introduction

2 Methodology

3 Classification

4 Regression
5 Clustering

6 Association Rule Mining

7 Meta-Learning

8 Summary

Regression Trees

■ Regression trees predict numeric values
■ They usually optimize mean-squared error
■ Party package uses statistical stopping rules (no pruning needed)

```
# Create a regression tree for Sepal.Width which optimizes mean-squared error
m = rpart( Sepal.Width ~ Species + Petal.Length + Petal.Width + Sepal.Length, data=iris, method="anova")
plot(m, compress=T, uniform=T, margin=0.7) # plot the tree
text(m, use.n=T) # add text to the tree
library(party) # package for recursive partitioning using nonparametric regression
m = ctree( Sepal.Width ~ Species + Petal.Length + Petal.Width + Sepal.Length, data=iris)
```


Sepal.Lengt|realabength< 5.25

Regression tree for Sepal.Width

Regression tree with party

Model Trees [1, p. 202ff, 214ff]

- Problem: CART trees can predict only one class/value per leaf

■ This is suboptimal for regression trees as the accuracy depends on the leafs \square Model trees add a linear regression model on the leaf node

■ Especially unused attributes can be used to predict the numerical value
■ M5-prime (M5P) algorithm is state of the art

Example for the Iris data and starting to compare model quality

```
library(RWeka)
m5 = M5P( Sepal.Width ~ Species + Petal.Length +
    \hookrightarrowPetal.Width + Sepal.Length, data=iris)
p5 = predict(m5, iris)
#M5 pruned model tree:
#(using smoothed linear models)
#Species=setosa <= 0.5 : LM1 (100/55.118%)
#Species=setosa > 0.5 : LM2 (50/57.858%)
#
#LM num: 1
#Sepal.Width =
# -0.2457 * Species=virginica,setosa
# + 0.4834 * Petal.Width
# + 0.1839 * Sepal.Length
# + 1.0373
#LM num: 2
#Sepal.Width =
# 0.0896 * Species=virginica,setosa
# - 0.0987 * Petal.Width
# + 0.6784 * Sepal.Length
# - 0.0485
# Number of Rules : 2
```

```
```


Compare the error of CART (rpart), party and M5P

```
```


Compare the error of CART (rpart), party and M5P

MAEi = function (p){
MAEi = function (p){
return (mean(abs(iris$Sepal.Width - p)))
 return (mean(abs(iris$Sepal.Width - p)))
}
}
print(sprintf("rpart: %f party: %f m5p: %f", MAEi(pm),
print(sprintf("rpart: %f party: %f m5p: %f", MAEi(pm),
MAEi(pp), MAEi(p5)))
MAEi(pp), MAEi(p5)))
\#MAE rpart: 0.203207 party: 0.206693 m5p: 0.189899
\#MAE rpart: 0.203207 party: 0.206693 m5p: 0.189899
MSEi = function (p){
MSEi = function (p){
return (sqrt(sum((iris$Sepal.Width - p)^2)/nrow(iris)))
 return (sqrt(sum((iris$Sepal.Width - p)^2)/nrow(iris)))
}
}
print(sprintf("MSE rpart: %f party: %f m5p: %f", MSEi(pm),
print(sprintf("MSE rpart: %f party: %f m5p: %f", MSEi(pm),
MMSi(pp), MSEi(p5)))
MMSi(pp), MSEi(p5)))
\#MSE rpart: 0.260416 party: 0.265323 m5p: 0.246495
\#MSE rpart: 0.260416 party: 0.265323 m5p: 0.246495
MAPEi = function (p) {
MAPEi = function (p) {
return (100*sum(abs((iris$Sepal.Width
 return (100*sum(abs((iris$Sepal.Width
@)/iris$Sepal.Width))/nrow(iris))
 @)/iris$Sepal.Width))/nrow(iris))
}
}
print(sprintf("MAPE rpart: %.1f%% party: %.1f%% m5p:
print(sprintf("MAPE rpart: %.1f%% party: %.1f%% m5p:
%.1f%%", MAPEi(pm), MAPEi(pp), MAPEi(p5)))
%.1f%%", MAPEi(pm), MAPEi(pp), MAPEi(p5)))
\#MAPE rpart: 6.8% party: 6.9% m5p: 6.4%

```
```

\#MAPE rpart: 6.8% party: 6.9% m5p: 6.4%

```
```


1 Introduction

2 Methodology
3 Classification

4 Regression
5 Clustering

6 Association Rule Mining

7 Meta-Learning

8 Summary

Clustering

■ Partition data into "similar" observations
■ Allows prediction of a class for new observations
■ Unsupervised learning strategy

- Clustering based on distance metrics to a center (usually euclidean)

■ Can identify regular (convex) shapes
■ k-means: k-clusters, start with a random center, iterative refinement
■ Hierarchical clustering: distance based methods
■ Usually based on N^{2} distance matrix
■ Agglomerative (start with individual points) or divisive
■ Density based clustering uses proximity to cluster members
■ Can identify any shape
■ DBSCAN: requires the density parameter (eps)
■ OPTICS: nonparametric
■ Model-based: automatic selection of the model and clusters
■ Normalization of variable ranges is mandatory
■ One dimension with values in 0 to 1 is always dominated by one of 10 to 100

K-means Clustering

Density-Based Clustering

```
library(fpc) # for dbscan
# For illustration purpose, we cluster the 4D feature set only using two variables
# 2D plot coloring the species
plot(iris$Sepal.Width, iris$Sepal.Length, col=iris$Species)
# Create a 2D matrix as input for dbscan
d = cbind(iris$Sepal.Width, iris$Sepal.Length)
# try to identify classes, showplot illustrates the process
p = dbscan(d, eps=0.35, showplot=1)
```


Real species (classes)

Output of dbscan

Model Based Clustering

■ Automatic selection of model and cluster number
■ Uses bayesian information criterion (BIC) and expectation-maximization

```
library(mclust)
m = Mclust(iris[,1:4]) # chooses a ellipsoidal model
```


Model-based classification

BIC

1 Introduction

2 Methodology

3 Classification

4 Regression

5 Clustering

6 Association Rule Mining

7 Meta-Learning

8 Summary

Association Rule Mining [44]

- Discover interesting relations in correlated facts and extract rules

■ Identify frequent item sets "likes HR, likes BigData"
■ Example association rule: "likes HR, likes BigData \Rightarrow likes NTHR"
■ Data are individual transactions, e.g., purchases, with items
■ Items $I=i_{1}, \ldots, i_{n}$

- Transactions $T=t_{1}, \ldots, t_{n}$

■ Each t_{i} is a subset of I, e.g., items bought together in a market basket
■ Several algorithms exist, e.g., APRIORI, RELIM
■ Relevance of rules is defined by support and confidence

- Assume $X \Rightarrow Y$ be an association rule, X, Y are item-sets

■ support(X): number of transactions which contains item-set X
■ confidence $(X \Rightarrow Y)=\operatorname{support}(X \cup Y) / \operatorname{support}(X)$: fraction of transactions which contain X and Y. Indicates if the rule is good

Titanic Dataset Shows what People Survived

Class

Association Analysis with Python Using Pyming ${ }^{3}$

```
from pymining import itemmining, assocrules
import csv
with open('titanic2.csv', 'r') as csvfile:
    reader = csv.reader(csvfile)
    data = [ r for r in reader ]
# apply relim algorithm
r = itemmining.get_relim_input(data)
# find frequent items (more than 1000 instances)
itemsets = itemmining.relim(r, min_support=1000)
# {frozenset(['No']): 1490, frozenset(['Male', 'Adult', 'No']): 1329, frozenset(['Adult', 'No']): 1438, frozenset(['Adult']):
    \hookrightarrow2092, frozenset(['Male', 'Adult']): 1667, frozenset(['Male', 'No']): 1364, frozenset(['Male']): 1731}
# mine the association rules
r = itemmining.get_relim_input(data)
itemsets = itemmining.relim(r, min_support=1)
rules = assocrules.mine_assoc_rules(itemsets, min_support=2, min_confidence=0.7)
# [((['Adult', 'No']), (['Male']), 1329, 0.9242002781641169), ((['No']), (['Male', 'Adult']), 1329, 0.8919463087248322), ...
# identify only survival-relevant rules with two or one items/attributes
relevant = [ (p, "Yes" in c,supp,conf) for p, c, supp, conf in rules if (c == frozenset(['No']) or c == frozenset(['Yes']))
    4 and len(p) <= 2]
relevant.sort(key=lambda x : x[1]) # sort based on the survival
for p, c, supp, conf in relevant:
    print(("%d,%.2f: %s <= %s" % (supp, conf, c, p)).replace("frozenset",""))
#1329,0.80: False <= (['Male', 'Adult'])
#476,0.76: False <= (['Adult', '3rd'])
#154,0.86: False <= (['Male', '2nd'])
#422,0.83: False <= (['Male', '3rd'])
#344,0.73: True <= (['Female'])
#316,0.74: True <= (['Adult', 'Female'])
#6,1.00: True <= (['1st', 'Child'])
#24,1.00: True <= (['2nd', 'Child'])
```


${ }^{3}$ https://github.com/bartdag/pymining

1 Introduction

2 Methodology
3 Classification

4 Regression

5 Clustering

6 Association Rule Mining
7 Meta-Learning

8 Summary

Meta-Learning [1, p.359ff]

■ Idea: combine multiple (weak) models to improve model performance
■ Ensemble: team of models used by a meta-model
■ Approach: take data subset to train each model and combine prediction

- Allocation function defines which training data each model receives
- Combination function resolves disagreement

■ Stacking: learn the combination function (as a ML model)
■ Advantage of meta-learning:

- Generalizability: prevents overfitting of training data

■ Performance: small models are faster to train, parallel training is possible

- Nuanced understanding: subtle patterns are better covered than in a global model

Bagging [1, p. 362]

- Bagging == bootstrap aggregation
- Approach:

1 Generate many training datasets by sampling the training data
2 Train a model for each training dataset (using the same learning algorithm)
3 Combine predictions

- Voting (for classification problems)
- Averaging (for prediction problems)

■ Particularly useful on unstable learners
■ Unstable learners: training algorithms depending heavily on the input data

- Random forest

■ Build many decision trees (\Rightarrow forest)
■ Increase variety by choosing a small set of features for each tree randomly

Boosting [1, p.366ff]

■ Differences to bagging
■ Generate complementary learners

- Weight vote of learner based on past performance

■ Adaptive boosting: learn the difficult-to-classify examples
■ First classifier: train on all data
■ Subsequent rounds: remove correct predictions (with a high probability)

- Stop after desired accuracy is reached or classifier does not improve

■ Weight vote based on accuracy on the training data on which it was built
■ In R: AdaBoost.M1 algorithm / C5.0 algorithm
■ Alternative approach: predictor for predicting the error

Summary

- Type of data: categorical, ordinal, numeric

■ Data preprocessing normalizes data / treats missing data
■ Machine learning problems:
■ Classification, regression, clustering, association rule mining
■ Holdout method: strategy to assess model quality
■ Evaluation of model performance
■ Categorical data: confusion matrix + metrics
■ Numerical data: residual, MAE, MSE, MAPE
■ Classification: K-NN, Naive Bayes, trees

- Regression: linear models, regression trees

■ Clustering: k-means, density-based
■ Association rule mining: market basket analysis with APRIORI

Bibliography

1 Book: Machine Learning with R. Brett Lantz. 2015. PACKT publishing.
10 Wikipedia
11 https://en.wikipedia.org/wiki/Stratified_sampling
12 https://en.wiktionary.org/wiki/Manhattan_distanc
32 https://en.wikipedia.org/wiki/lmputation_(statistics)
33 https://en.wikipedia.org/wiki/Missing_data
34 https://en.wikipedia.org/wiki/Generalized_linear_model
35 https://en.wikipedia.org/wiki/Data_mining
38 https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
$39 \mathrm{ftp}: / / \mathrm{ftp} . \mathrm{software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/}$ CRISP-DM.pdf

40 https://en.wikipedia.org/wiki/Machine_learning
41 http://www.rdatamining.com/docs/introduction-to-data-mining-with-r
42 CRAN Task View: Machine Learning \& Statistical Learning https://cran.r-project.org/web/views/MachineLearning.html
43 http://www.rdatamining.com/examples/text-mining
44 https://en.wikipedia.org/wiki/Association_rule_learning

[^0]: ${ }^{1}$ Also called actual value, but I prefer observation since we do not know if it is the true value.

[^1]: ${ }^{2}$ http://scikit-learn.org/stable/

