Databases and Data Warehouses

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2016-11-04

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

Patabases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

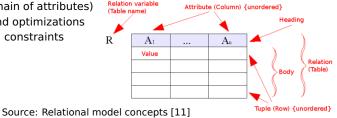
Outline

1 Relational Model

- 2 Databases and SQL
- 3 Advanced Features for Analytics
- 4 Data Warehouses
- 5 Summary

- 2 Databases and SQL
- 3 Advanced Features for Analytics
- 4 Data Warehouses

5 Summary


Advanced Features for Analytics

Data Warehouses

Summary

Relational Model [10]

- Database model based on first-order predicate logic
 - Theoretic foundations: relational algebra and calculus
- Data is represented as tuples
- Relation/Table: groups similar tuples
 - Table consists of rows and named columns (attributes)
 - No duplicates of complete rows allowed
- In a pure form, no support for collections in tuples
- Schema: specify structure of tables
 - Datatypes (domain of attributes)
 - Organization and optimizations
 - Consistency via constraints

Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Example Schema for our Students Data

Description

Database for information about students and lectures

Relational model

Natrikal	Namo	Birthday	ID	Name
		,	1	Big Data Analytics
242	Hans	22.04.1955	2	Hochleistungsrechnen
245	Fritz	24.05.1995	2	nochicistangsrechnen
2	242	42 Hans		MatrikelNameBirthday1242Hans22.04.19552

Student table

Lecture table

Matrikel	LectureID
242	1
242	2
245	2

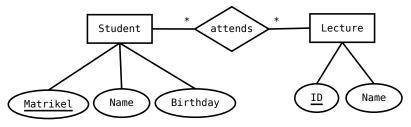
Attends table representing a relation

Relationships

- Model relationships between data entities
- Cardinality defines how many entities are related
 - One-to-many: One entity of type A with many entities of type B
 - Many-to-many: One-to-many in both directions
 - One-to-one: One entity of type A with at most one entity of type B
- Relationships can be expressed with additional columns
 - Packing data of entities together in the table
 - Alternatively: provide a "reference" to other tables

Matrikel	Name	Birthday	Lecture ID	Lecture Name
242	Hans	22.04.1955	1	Big Data Analytics
242	Hans	22.04.1955	2	Hochleistungsrechnen
245	Fritz	24.05.1995	2	Hochleistungsrechnen

Student table with attended lecture information embedded


Databases and SQL

Advanced Features for Analytics

Entity Relationship Diagrams

Illustrate the relational model and partly the database schema

- Elements: Entity, relations, attributes
 - Additional information about them, e.g., cardinality, data types

A student/lecture example in modified Chen notation * is the cardinality and means any number is fine

Databases and SQL

Advanced Features for Analytics

Keys [16, 17, 18]

- A Superkey¹ allows addressing specific tuples in a table
- Superkey: Set of attributes that identify each tuple in a table
 - There can be at most one tuple for each possible key value
 - A superkey does not have to be minimal
 - e.g., all columns together are a Superkey of any table
 - After removing an attribute, it can still be a key
 - Simple key: key is only one attribute
 - Compound key: consists of at least two attributes
- Candidate key: a minimal key, i.e., no attribute can be removed
- Primary key: the selected candidate key for a table
- Foreign key: inherited key of another table
- Natural key: key that naturally is unique, e.g., matrikel
- Surrogate key: artificial key, e.g., numeric ID for a row

¹Often it is just called key

Relational Model			
Example	Keys		

Student table							
Matrikel	Name	Birthday			ID	Name	Semester
242 245	Hans Fritz	22.04.1955 24.05.1995			1	Big Data Analytics Hochleistungsrechnen	SS15 WS1516
					2	nochielstungsrechnen	W31310

Lecture table

Attends table representing a relation

Matrikel	LectureID
242	1
242	2
245	2

Student table

- Candidate keys: Matrikel, (name, birthday, city), social insurance ID
- Primary key: Matrikel (also a natural key)

Lecture table

Candidate keys: ID, (Name, Semester)

Chudant table

- Primary key: ID (also a Surrogate Key)
- Attends table
 - Candidate key: (Matrikel, Lecture ID)
 - Primary key: (Matrikel, Lecture ID)

Normalization [10]: My Simplified Perspective

- Normalization is the process of organizing the columns and tables to minimize redundancy [19]
 - Reduces dependencies
 - Prevents inconsistency across replicated information
 - Normally, reduces required storage space and speeds up updates
- There are different normal forms with increasing requirements
 - INF: It follows our notion of a table.
 - No collections in the table. A primary key exists.
 - 2NF: No redundancy of data
 - i.e., entities of many-to-many relations are stored in separate tables
 - Every column must depend on each candidate key and not a subset
 - 3NF: Columns are not functional dependent to sth. else than a candidate key
 - 4NF: Do not store multiple relationships in one table

• 4NF is a good choice² for transactional data processing but not big data

²It has been shown that 4NF can always be achieved for relational data

Example for Unnormalized Data

Matrikel	Name	Birthday	Name
242	Hans	22.04.1955	[Big Data Analytics, Hochleistungsrechnen]
245	Fritz	24.05.1995	Hochleistungsrechnen

Not normalized Student and lecture table/relation, contains identical column names and collections. Problematic if we want to update the name of an lecture.

Matrikel	Name	Birthday	Lecture Name
242	Hans		Big Data Analytics
242	Hans	22.04.1955	Hochleistungsrechnen
245	Fritz	24.05.1995	Hochleistungsrechnen

Student and lecture table/relation in 1NF, it contains a many-to-many relation. Changing lecture name requires still to touch multiple rows.

Databases and SQL

Advanced Features for Analytics

Example for Unnormalized Data

Matrikel	Name	Birthday	Age
242	Hans	22.04.1955	40
245	Fritz	24.05.1995	20

In 2NF but not 3NF: Age is functional depending on birthday

Matrikel	Attended lecture	Attended seminar
242	BDA	SIW
242	HR	SIW
242	BDA	NTH
242	HR	NTH

In 3NF but not 4NF: Candidate key depends on all three columns

2 Databases and SQL

- 3 Advanced Features for Analytics
- 4 Data Warehouses

5 Summary

Databases [29]

Database: an organized collection of data

- Includes layout (schemes), queries, views
- Database models: Relational, graph, document, ...
- Database management system (DBMS): software application that interacts with the user, other applications and the database itself to capture and analyze data [29]
 - Definition, creation, update, querying and administration of databases

DBMS functions for managing databases

- Data definition: Creation, modification of definitions for data organization
- Update: Insertion, modification and deletion of data
- Query/Retrieval: retrieving stored and computing derived data
- Administration: users, security, monitoring, data integrity, recovery

Structured Query Language (SQL) [20]

Declarative language: specify what to achieve and not how

Evolving standard with growing feature set

Language elements

- Statement: instructions to perform, terminate by ;
 - Query: alternative name; usually retrieves/computes data
- Clause: components of statements
- Predicates: conditions limiting the affected rows/columns
- Expressions: produce scalar values or tables
- Operators: compare values, change column names
- Functions: transform/compute values

PostgreSQL [10]

A popular database implementation

- Semantics: ACID support for transactions
 - A transaction is a batch of operations
 - It either fails or succeeds
- Implements majority of SQL:2011 standard
 - Syntax may differ from SQL standard and extensions are provided
- Interactive shell via psql

Excerpt of features

- Materialized views (create virtual tables from logical tables)
- Fulltext search
- Regular expression
- Statistics and histograms
- User defined objects (functions, operators)
- Triggers: events upon insert or update statements; may invoke functions
- New versions support semi-structed data in arrays, XML, JSON³

³See http://www.postgresql.org/docs/9.4/static/arrays.html and .../functions-json.html

Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Schemas (in Postgres)

Creation of a database and table

```
1 CREATE ROLE "bigdata" NOSUPERUSER LOGIN PASSWORD 'mybigdata';
2 CREATE DATABASE bigdata OWNER "bigdata";
```

To connect to the database use psql -W -U bigdata bigdata

Create our tables

1 CREATE TABLE students (matrikel INT, name VARCHAR, birthday DATE, PRIMARY KEY(matrikel)); 2 CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id)); 3 CREATE TABLE attends (matrikel INT, lid INT, 4 FOREIGN KEY (matrikel) REFERENCES students(matrikel), 5 FOREIGN KEY (lid) REFERENCES lectures(id)); 6 -\d <TABLE> prints the schema

Additional constraints

1 -- minimum length of the name shall be 5
2 ALTER TABLE students ADD CONSTRAINT length CHECK (char_length(name) > 3);
3 -- to remove the constraint later: ALTER TABLE students DROP CONSTRAINT length ;
4 -- minimum age of students should be 10 years
5 ALTER TABLE students ADD CONSTRAINT age CHECK (extract('year' from age(birthday)) > 10);
6 -- disallow NULL values in students
7 ALTER TABLE students ALTER COLUMN birthday SET NOT NULL; -- during CREATE with "birthday DATE NOT NULL"
8 ALTER TABLE students ALTER COLUMN name SET NOT NULL;

Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Populating the Tables

```
-- Explicit specification of columns, not defined values are NULL
2 INSERT INTO students (matrikel, name, birthday)
    VALUES (242, 'Hans', '22.04.1955');
3
4 -- Insertation of the same name twice could be prevented using a constraint
5 INSERT INTO students (matrikel, name) VALUES (246, 'Hans'):
6 -- Order is expected to match the columns in the table
7 INSERT INTO students VALUES (245, 'Fritz', '24.05.1995');
8 INSERT INTO lectures VALUES (1, 'Big Data Analytics');
9 INSERT INTO lectures VALUES (2, 'Hochleistungsrechnen');
10
  -- Populate relation
11
12 INSERT into attends VALUES(242. 1):
13 INSERT into attends VALUES(242, 2);
14 INSERT into attends VALUES(245, 2);
15
16 -- Insertations that will fail due to table constraints:
17 INSERT INTO students (matrikel, name) VALUES (250, 'Hans'):
  -- ERROR: null value in column "birthday" violates not-null constraint
18
19 INSERT INTO students VALUES (250, 'Hans', '22.04.2009');
20 -- ERROR: new row for relation "students" violates check constraint "age"
21 INSERT INTO students VALUES (245, 'Fritz', '24.05.1995');
22 -- ERROR: duplicate key value violates unique constraint "students_pkey"
23 -- DETAIL: Key (matrikel)=(245) already exists.
```

Summary

Queries [20]

- A query retrieves/computes a (sub)table from tables
- It does not change/mutate any content of existing tables
- Statement: SELECT < column1 >, < column2 >,...
- Subqueries: nesting of queries is possible

Supported clauses

- FROM: specify the table(s) to retrieve data
- WHERE: filter rows returned
- GROUP BY: group rows together that match conditions
- HAVING: filters grouped rows
- ORDER BY: sort the columns

Ordering of results

```
1 -- Example comment, alternatively /* */
2 select * from students
3 where (name != 'fritz' and name != 'nena') -- two constraints
4 order by name desc; -- descending sorting order
```

Aggregation functions

```
1 -- There are several aggregate functions such as max, min, sum, avg
2 select max(birthday) from students;
3 -- 1995-05-24
4 5
5 -- It is not valid to combine reductions with non-reduced columns e.g.
6 select matrikel, max(birthday) from students; -- ERROR!
```

Counting the number of students

```
1 -- Number of students in the table and rename the column to number
2 SELECT count(*) AS number FROM students;
3 -- number
4 -- 2
```

Subqueries

A subquery creates a new (virtual) named table to be accessed

Identify the average age

1	Identify the min, max, avg age; we create a new table and convert the	date
2	<pre>select min(age), avg(age), max(age) from</pre>	
3	Here we create the virtual table with the name ageTbl	
4	(SELECT age(birthday) as age from students) as ageTbl;	
5	min avg	max
6	20 years 3 mons 30 days 40 years 4 mons 15 days 12:00:00 60 years	

Identify students which are not attending any course

```
    -- We use a subquery and comparison with the set
    select matrikel from students
    where matrikel not in -- compare a value with entries in a column
    (select matrikel from attends);
```

Subquery expressions: exists, in, some, all, (operators, e.g., <)⁴

⁴See http://www.postgresql.org/docs/9.4/static/functions-subquery.html

Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Grouping of Data

Data can be grouped by one or multiple (virtual) columns It leads to errors when including non-grouped / non-reduced values

Identify students with the same name and birthday, count them

1	select name, birthday, o	<pre>count(*) from students group by name, birthday;</pre>
2	name max	count
3	+	
4	Fritz 1995-05-24	1
5	Hans 1955-04-22	1

Figure out the number of people starting with the same letter

Databases and SQL

Advanced Features for Analytics

Summary

Filtering Groups of Data

- With the HAVING clause, groups can be filtered
- ORDER BY is the last clause and can be applied to aggregates

Identify students with the same name and birthday, and return the total number of non-"duplicates"

```
1 select sum(mcount) from
    (select count(*) as mcount from students
2
     group by name, birthday having count(*) = 1 order by count(*)) as groupCount;
3
  -- SUM
Δ
  -- 2
5
6
  -- Alternatively in a subguery you can use:
  select sum(count) from
8
    (select count(*) as count from students
9
     group by name, birthday) as groupCount
10
     where count = 1;
11
```

Joins [10]

A join combines records from multiple tables

- Used to resolve relations of entities in normalized schemes
- Usually filtering tuples according to a condition during this process

Types of joins

- CROSS JOIN: Cartesian product of two tables (all combination of rows)
- NATURAL JOIN: All combinations that are equal on their common attributes (i.e, both tables contain the matrikel column)
- INNER JOIN: Return all rows that have matching records based on a condition
- OUTER JOIN: Return all rows of both tables even if they are not matching the condition
 - LEFT OUTER JOIN: Return all combinations and all tuples from the left table
 - RIGHT OUTER JOIN: ... from the right table
 - FULL OUTER JOIN: Return all combinations

Relational Mode		Advanced Features for Analytics	Data Warehouses	Summary
Example Joins				
Γ				
<pre>1 select * from students as s1 CROSS JOIN students as s2;</pre>				
2 matr	ikel name birthday	matrikel name birthe	lay	
3	+++-	+++		
4	242 Hans 1955-04-22	242 Hans 1955-04	1-22	
5	242 Hans 1955-04-22	245 Fritz 1995-0	5-24	
6	245 Fritz 1995-05-24	242 Hans 1955-04	-22	

245 | Fritz | 1995-05-24 | 245 | Fritz | 1995-05-24

2

birthdav | matrikel | lid

+-----

| 1955-04-22 | 242 |

select * from students INNER JOIN attends ON students.matrikel = attends.matrikel;

birthdav | lid

| 1955-04-22 | 1

| 1955-04-22 | 2

Hans | 1955-04-22 | 242 |

9 select * from students NATURAL JOIN attends;

21 -- 245 | Fritz | 1995-05-24 | 245 |

Hans

14 -- 245 | Fritz | 1995-05-24 |

19 -- 242

20 -- 242 | Hans

7 --

15

18

12 - -

10 -- matrikel | name |

242 |

17 -- matrikel | name |

13 -- 242 | Hans

1

2

2

Databases and SQL Example Joins 1 -- This join returns NULL values for Fritz as he has not the selected matrikel 2 select * from students LEFT OUTER JOIN attends ON students.matrikel = 242: 3 -- matrikel | name | birthdav | matrikel | lid 4 1955-04-22 | 242 Hans 242 5 242 | Hans | 1955-04-22 | 242 2 6 --2 242 | Hans | 1955-04-22 | 245 7 - -8 - -245 | Fritz | 1995-05-24 | 9 10 select * from students as s FULL OUTER JOIN attends as a ON s.matrikel = a.lid: -- matrikel | name birthday | matrikel | lid 11 242 13 --1 242 I 2 14 - -245 2 15 - -242 | Hans 1955-04-22 16 - -245 | Fritz | 1995-05-24 | 17 - -18 19 -- Now identify all lectures attended by Hans 20 select s.name. l.name from students as s INNER JOIN attends as a ON s.matrikel \hookrightarrow = a.matrikel INNER JOIN lectures as 1 ON a.lid=l.id: 21 -- name I name 22 - -23 -- Hans | Big Data Analytics Hochleistungsrechnen 24 -- Hans I 25 -- Fritz | Hochleistungsrechnen

Updating Rows

- UPDATE statement changes values
- DELETE statement removes rows
- Each operation yields the ACID semantics⁵
- Transactions allow to batch operations together

⁵In fact, when AUTOCOMMIT is enabled, every statement is wrapped in a transaction. To change this behavior on the shell, invoke: SET AUTOCOMMIT [OFF|ON]

Databases and SQL

dvanced Features for Analytics

Transactions

- Transaction: A sequence of operations executed with ACID semantics
 - It either succeeds and becomes visible and durable; or it fails
 - Note: Complex data dependencies of concurrent operations may create a unresolvable state that require restart
- All queries access data in the version when it started
 - The isolation level can be relaxed, e.g., to see uncommited changes
- Internally, complex locking schemes ensure conflict detection

Example: Atomic money transfer between bank accounts

```
1 START TRANSACTION;
2 UPDATE account SET balance=balance-1000.40 WHERE account=4711;
3 UPDATE account SET balance=balance+1000.40 WHERE account=5522;
4 
5 -- if anything failed, revert to the original state
6 IF ERRORS=0 COMMIT; -- make the changes durable
7 IF ERRORS!=0 ROLLBACK; -- revert
```

Performance Aspects

Problem: When searching for a variable with a condition, e.g., x=y, the table data needs to be read completely (full scan)

Indexes

- Index allows lookup of rows for which a condition (likely) holds
- Postgres supports B-tree, hash, GiST, SP-GiST and GIN indexes⁶

CREATE INDEX ON students (name);

Optimizing the execution of operations (query plan)

- Postgres uses several methods to optimize the query plan
- The query planer utilizes statistics about access costs
 - Knowing how values are distributed helps optimizing access
- ANALYZE statement triggers collection of statistics
- Alternatively: automatically collect statistics
- EXPLAIN statement: describes the query plan (for debugging)

⁶See http://www.postgresql.org/docs/9.4/static/sql-createindex.html

Performance Aspects (2) [22]

Bulk Loads/Restores

- Combine several INSERTS into one transaction
- Perform periodic commits
- Create indexes/foreign key/constraints after data was inserted

Garbage cleaning / vacuuming: Cleaning empty space

- When changing or inserting rows additional space is needed
- It is expensive to identify empty rows and compact them
 - \Rightarrow Just append new data
 - Mark data, e.g., in a bitmap as outdated
- Periodically space is reclaimed and data structures are cleaned
- VACCUUM statement also triggers cleanup
- ANALYZE also estimates the amount of garbage to optimize queries

- 2 Databases and SQL
- 3 Advanced Features for Analytics
- 4 Data Warehouses

5 Summary

Views

- View: virtual table based on a query
 - Can be used to re-compute complex dependencies/apply joins
 - The query is evaluated at runtime, which may be costly
- Materialized view: copies data when it is created/updated⁷
 - Better performance for complex queries
 - Suitable for data analytics of data analysts
 - Export views with permissions and reduce knowledge of schema

```
CREATE VIEW studentsView AS
    SELECT s.matrikel, s.name as studentName, l.name as lectureName, age(birthday) as age
          \hookrightarrow from students as s INNER JOIN attends as a ON s.matrikel = a.matrikel INNER
          \hookrightarrow JOIN lectures as 1 ON a.lid=l.id:
3
  select * from studentsView;
4
  -- matrikel | studentname |
                                    lecturename
                                                                   age
          242 | Hans
                              | Big Data Analytics | 60 years 5 mons 1 day
          242 | Hans
                            | Hochleistungsrechnen | 60 years 5 mons 1 day
8
  - -
          245 | Fritz
                                Hochleistungsrechnen | 20 years 3 mons 30 days
9
  - -
10 -- To replace the data with new data
11 REFRESH MATERIALIZED VIEW studentsView;
```

⁷www.postgresql.org/docs/9.4/static/sql-creatematerializedview.html

Databases and SQL

Advanced Features for Analytics

Regular Expressions

- PostgreSQL supports several styles of regular expressions⁸
- We will look at POSIX regular expressions (regex)
- Operator: ~for matching and ~* for not matching
- regexp_matches(string, pattern) returns text array with all matches

Examples

```
1 -- Any lecture which name contains Data
2 select name from lectures where name~*'data':
  -- Big Data Analytics
3
4
5 -- Lectures starting with Big
6 select name from lectures where name~'^Big.*$':
  -- Big Data Analytics
7
8
9 -- Students whose name contain at least two vocals
10 select name from students where name~'(i|a|o|u).*(a|i|o|u)';
11
  -- Students whose name contain at least one vacal and at most three
12
13
  select name from students where name~'^([^auiu]*(i|a|o|u)[^aiou]*){1,3}$':
14
  -- Retrieve all lower case letters in the names
15
16 select regexp_matches(name, '[a-z]', 'g') as letter from students;
17 -- {a}, {n} ...
```

Array Operations

- Operations allow manipulation of multidimensional arrays⁹
- Useful operators: unnest, array_agg, array_length
- JSON support in new postgres version (not discussed here)

```
-- Alternative schema for our student/lecture example using an array for the attends relationship
   CREATE TABLE studentsA (matrikel INT, name VARCHAR, birthday DATE, attends INT[], PRIMARY KEY(matrikel)):
 3
   CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));
 4
 5
   INSERT INTO studentsA VALUES (242, 'Hans', '22.04.1955', '{1,2}');
 6
   INSERT INTO studentsA VALUES (245, 'Fritz', '24.05.1995', '{2}');
 7
8
   -- Addressing array elements: first lecture attended by each student
   SELECT attends[1] from studentsA:
 q
   -- Slicing is supported: First three lectures
10
   SELECT attends[1:3] from studentsA;
12
13
   -- Retrieve the lecture name attended for each student
   SELECT s.name, l.name from studentsA AS s INNER JOIN lectures AS l ON l.id = ANY(s.attends);
14
   -- Hans | Big Data Analytics
15
16
   -- Hans | Hochleistungsrechnen
   -- Fritz | Hochleistungsrechnen
17
18
19 -- Now retrieve the lectures in an array per person
20 SELECT s.name. array_agg(l.name) from studentsA AS s INNER JOIN lectures AS L ON l.id = ANY(s.attends) GROUP by s.matrikel:
21 -- Hans | {"Big Data Analytics", Hochleistungsrechnen}
22 -- Fritz | {Hochleistungsrechnen}
```

⁹See http://www.postgresql.org/docs/9.4/static/arrays.html

Processing Geospatial Data with PostGIS [30, 31]

PostGIS is a PostgreSQL extension providing datatapes and functions for

- Topology: Faces, Edges and Nodes
 - Defines constraints on data, e.g., sharing of edges in maps
- Geometry/Geography: coordinates according to SRID
 - Spatial Reference System Identifier (SRID) defines coordinate system
 - Lon/Lat coordinates on a sphere with the unit degrees
 - Points, lines, poligones
- Raster data: like pixels, square-based split of a 2D plane
 - Example: Import / export of images
- QGIS viewer¹⁰ can visualize geometry and raster data

¹⁰ http://qgis.org/

Databases and SQL

Advanced Features for Analytics

Summary

PostGIS: Example [31]

```
1 -- Creating a database with geography data (SRID 4326 => WGS 84 => for GPS => lon/lat)
2 CREATE TABLE cities(gid serial PRIMARY KEY, n TEXT, loc geography(POINT.4326)):
3 CREATE INDEX cities_idx ON cities USING GIST ( loc ):
 4
5 -- Insert three cities with Lon/Lat coordinates
6 INSERT INTO cities (n, loc) VALUES('Hamburg', ST_GeographyFromText('POINT(9.99 53.5)'));
7 INSERT INTO cities (n, loc) VALUES('Tokio', ST_GeographyFromText('POINT(139.8 35.65)'));
8 INSERT INTO cities (n, loc) VALUES('Aleppo',ST_GeographyFromText('POINT(37 36)'));
9
  -- Compute distance between Hamburg and Tokio
10
11 SELECT ST_Distance( (Select loc from cities where n = 'Hamburg'),
                       (Select loc from cities where n = 'Tokio'));
12
  -- 9012369.89691784 == 9012 km
13
14
15 -- How far is Allepo from a plane flying from Hamburg to Tokio, here as text
16 SELECT ST_Distance('LINESTRING(9.99 53.5, 139.8 35.65)'::geography.
         'POINT(37 36)':: geography);
17
18 -- 2833 km
```

- 2 Databases and SQL
- 3 Advanced Features for Analytics
- 4 Data Warehouses

5 Summary

Data Warehouse

"A data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis." [27]

- Central repository
- Integrates data from multiple inhomogeneous sources
- Data analysts use a simplified data model: a multidimensional data cube
- Provides tools for the data analyst to support descriptive analysis
- May provide some tools for predictive analysis
- Many queries are executed periodically and used in reports

Databases vs. Data Warehouses for Structured Data

Database management systems (DBMS)

- Standardized systems and methods to process structured data
- Use the relational model for data representation
- Use SQL for processing

Online Transaction Processing (OLTP)

- Real-time processing
- Offer ACID qualities
- Relies on normalized schemes (avoid redundant information)

Online Analytical Processing (OLAP)

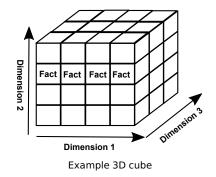
- Systems and methods to analyze large quantities of data
- Utilizes data warehouses with non-normalized schemes
- Extract, Transform and Load (ETL): import data from OLTP

Databases and SQL

dvanced Features for Analytics

OLAP

- Online analytical process with large quantities of business data
- Utilizes denormalized dimensional model to avoid costly joins
- Technology alternatives:
 - MOLAP (Multidimensional OLAP): problem-specific solution
 - ROLAP: use relational databases to represent cube
 - Star schema
 - Snowflake schema


Dimensional modeling: design techniques and concepts [26]

- 1 Choose the business process, e.g., sales situation
- 2 Declare the grain: what does the model focus on, e.g., item purchased
- 3 Identify the dimensions
- 4 Identify the facts

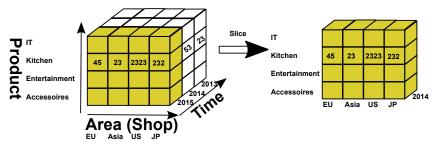
Databases and SQL

The OLAP Cube: Typical Operations [27]

- Slice: Fix one value to reduce the dimension by one
- Dice: Pick specific values of multiple dimensions
- Roll-up: Summarize data along a dimension
 - Formulas can be applied, e.g., profit = income expense
- Pivot: Rotate the cube to see the faces

Databases and SQL

Advanced Features for Analytics


Data Warehouses

Summary

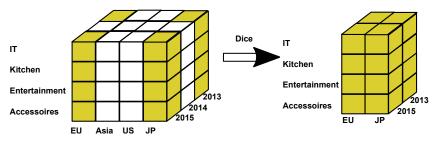
The OLAP Cube: Slice [27]

Slice: Fix one value to reduce the dimension by one

Example: Sales (in Euro) for worlwide stores

Example cube for sales in stores

Databases and SQL


Advanced Features for Analytics

Data Warehouses

Summary

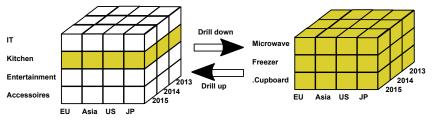
The OLAP Cube: Dice [27]

Dice: Pick specific values of multiple dimensions

Example cube for sales in stores

Databases and SQL

Advanced Features for Analytics


Data Warehouses

Summary

The OLAP Cube: Drill Down/Up [27]

Drill Down/Up: Navigate the aggregation level

- Drill down increases the detail level
- Drill up decreases the detail level

Example cube for sales in stores

Advanced Features for Analytics

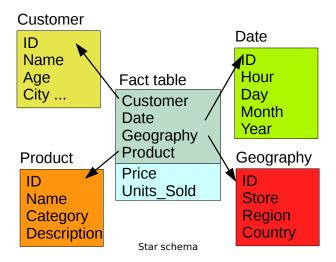
Star (and Snowflake) Schemas [23]

Implement the OLAP cube in relational databases

Data model

- Fact table: records measurements/metrics for a specific event
 - Center of the star
 - Transaction table: records a specific event, e.g., sale
 - Snapshot table: record facts at a given point in time, e.g., account balance at the end of the month
 - Accumulating table: aggregate facts for a timespan, e.g., month-to-date sales for a product
 - \Rightarrow A fact table retains information at a low granularity and can be huge
 - Dimension tables: describe the facts in one dimension
 - Contains, e.g., time, geography, product (hierarchy), employee, range
 - The fact table contains a FOREIGN KEY to all dimension tables
 - \Rightarrow Comparably small tables

Snowflake schema normalizes dimensions to reduce storage costs


Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Star Schema Example Model

Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Star Schema: Example Query

Analyze the sales of TVs per country and brand [23]

```
SELECT P.Brand, S.Country AS Countries, SUM(F.Units_Sold)
  FROM Fact Sales F
3 INNER JOIN Date
                     D ON (F.Date_Id = D.Id)
  INNER JOIN Store
                    S ON (F.Store_Id = S.Id)
  INNER JOIN Product P ON (F.Product_Id = P.Id)
5
6
  WHERE D.Year = 1997 AND P.Product_Category = 'tv'
7
8
  GROUP BY
q
10
    P.Brand.
    S.Countrv
11
```

Databases and SQL 0000000000000000000 Advanced Features for Analytics

Data Warehouses

Summary

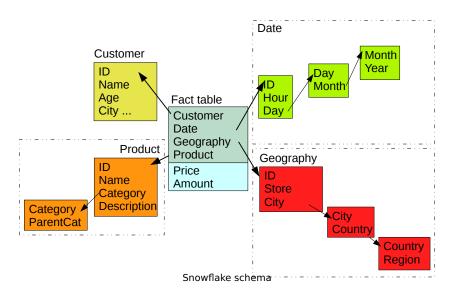
Star Schema [23]

Advantages

- Simplification of queries and performance gains
- Emulates OLAP cubes

Disadvantages

- Data integrity is not guaranteed
- No natural support for many-to-many relations


Databases and SQL

Advanced Features for Analytics

Data Warehouses

Summary

Snowflake Schema Example Model

Databases and SQL

dvanced Features for Analytics

Data Warehouses

Summary

Summary

- ER-diagrams visualize the relational data model
- Keys allow addressing of tuples (rows)
- Normalization reduces dependencies
 - Avoids redundancy, prevents inconsistency
- SQL combines data retrieval/modification and computation
 - Insert, Select, Update, Delete
 - Joins combine records
- Transactions executes a sequence of operations with ACID semantics
- A database optimizes the execution of the queries (query planer)
- Semi-structured data analysis is possible within JSON and XML
- OLAP (Cube) deals with multidimensional business data
- Data warehouses store facts along their dimensions
- Star-schema implements OLAP in a relational schema

Bibliography

- 10 Wikipedia
- 11 https://en.wikipedia.org/wiki/Relational_model
- 16 https://en.wikipedia.org/wiki/Superkey
- 17 https://en.wikipedia.org/wiki/Candidate_key
- 18 https://en.wikipedia.org/wiki/Unique_key
- 19 https://en.wikipedia.org/wiki/Database_normalization
- 20 https://en.wikipedia.org/wiki/SQL
- 21 PostgreSQL Documentation http://www.postgresql.org/docs/9.4/static/
- 22 https://wiki.postgresql.org/wiki/Performance_Optimization
- 23 https://en.wikipedia.org/wiki/Star_schema
- 24 https://en.wikipedia.org/wiki/Data_mart
- 25 https://en.wikipedia.org/wiki/Snowflake_schema
- 26 https://en.wikipedia.org/wiki/Dimensional_modeling
- 27 https://en.wikipedia.org/wiki/OLAP_cube
- 28 https://en.wikipedia.org/wiki/Data_warehouse
- 29 https://en.wikipedia.org/wiki/Database
- 30 http://www.bostongis.com/?content_name=postgis_tut01
- 31 http://postgis.net/docs/manual-dev/